http://buy-cc-info.https-d-good-shop-cc-contact.ru Элементы технологического процесса в машиностроении. Технологические процессы в машиностроении. Изготовление отливок литьем под низким давлением

Элементы технологического процесса в машиностроении. Технологические процессы в машиностроении. Изготовление отливок литьем под низким давлением

Тольяттинский государственный университет

Кафедра «ОТМП»

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ

(курс лекций дисциплины)

заочной формы обучения ст. направления «Технология машиностроения»

Тольятти 2010

1. ПРЕДМЕТ «ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ». ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

1.1. Предмет «ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ»

Слово «технология» имеет греческое происхождение и состоит из двух слов: «techne»- мастерство, умение и «logos» - учение. Таким образом, дословно, «технология» -это учение о мастерстве.

Как отрасль техники технология -это совокупность приемов и спо­собов получения, обработки или переработки сырья, материалов, заготовок или изделий.

Технологию рассматривают применительно к конкретной отрасли производства, например, технология машиностроения, технология двигателестроения, технология строительства, технология автострое­ния, технология горных работ, технология приборостроения и т.д.

Технология машиностроения -это совокупность приемов и способов механической обработки и сборки изделий в машиностроении.

Главнейшей задачей технологии машиностроения является изучение закономерностей построения технологических процессов, которые обеспе­чивали бы заданную производительность, точность и качество обработки и сборки.

Различают следующие этапы подготовки к производству:

ЭТАП I.Конструкторская подготовка производства.

При его выполнении отвечают на вопрос:

Что делать? (конструкция детали, узла и т.п., ее назначение, материал, термообработка и т.д.).

Первый этап выполняется конструкторами, которые при необходи­мости привлекают к работе технологов, экономистов, дизайнеров и т.д.

Цель первого этапа -создание конструкторской документации, необ­ходимой для изготовления изделия.

ЭТАП II.Технологическая подготовка производства.

При его выполнении отвечают на вопросы:

Из чего делать? (способ получения заготовки, ее конструкция).

Как делать? (технология).

На чем делать? (оборудование).

Чем делать? (инструмент).

Где делать? (организация производства).

Второй этап выполняется технологами.

Цель второго этапа -анализ конструкции изделия на технологичность и разработка технологического процесса его изготовления.

1.2. Основные понятия и определения

Изделием называется единица промышленной продукции в конечной стадии для данного производства. Исчисляется в штуках.

В зависимости от назначения различают изделия основного и вспо­могательного производств.

В основном производстве изготавливаются изделия, предназначен­ные для реализации другим потребителям.

Во вспомогательном производстве изготавливаются изделия, предназначенные только для внутреннего потребления.

Обычно изделия состоят из деталей.

Деталь - это изделие, или его часть, изготовленное из однородного материала без применения сборочных операций.

Заготовка - это предмет производства, из которого путем изменения формы, размеров, шероховатости поверхности и свойств материала изго­тавливают деталь.

Исходная заготовка - это заготовка перед первой технологической операцией механической обработки.

Различают следующие основные виды механической обработки:

1. Обработка резанием (происходит снятие стружки).

2. Обработка давлением (без снятия стружки).

3. Термическая обработка (изменение структуры и свойств заготовки с ис­пользованием теплового воздействия).

4. Электрофизическая обработка (изменение размеров и свойств заготовки с использованием непосредственно электрического тока).

5. Лучевая обработка (изменение размеров и свойств заготовки с использо­ванием энергии излучения).

Для превращения исходного материала в готовое изделие необходи­мо выполнить различные действия. Например, получить заготовку, провес­ти механическую и термическую обработку, провести контроль качества и размеров, осуществить транспортировку заготовок от одного рабочего места к дру­гому, организовать подачу электричества, сжатого воздуха, воды и т.д. Все это части производственного процесса.

Производственный процесс -совокупность всех действий, необходи­мых для превращения исходного материала в готовое изделие.

Производственный процесс изготовления машины состоит из техно­логических процессов различных видов работ: технологический процесс механической обработки, технологический процесс сборки, технологиче­ский процесс термообработки и т.д.

Технологический процесс механической обработки -это совокуп­ность действий по изменению размеров, формы и свойств заготовки.

Технологический процесс состоит из технологических операций.

Технологическая операция -это законченная часть технологического процесса, выполняемая на одном рабочем месте.

Рабочее место -это часть площади цеха, на которой размещено обо­рудование, оснастка и инструмент для выполнения одной технологической операции.

В операции обработки резанием включаются все действия рабочего, связанные с управлением станком, все автоматические движения механиз­мов станка, все вспомогательные действия по установке, закреплению и снятию заготовок со станка и т.п.

Технологические операции являются основным элементом произ­водственного планирования.

Операциям присваивается порядковый номер (005, 010, 015и т.д.) и дается наименование в зависимости от применяемого оборудования (токарно-револьверная, сверлильная, фрезерная и т.п.)

Для выполнения технологического процесса необходимы средства производства. Они включают: технологическое оборудование, технологи­ческую оснастку и режущий инструмент.

Технологическое оборудование - это средства производства, необхо­димые для выполнения операций по обработке заготовок (металлорежущие станки, прессы, термические печи и т.д.).

Технологическая оснастка - это вспомогательные устройства, добав­ляемые к технологическому оборудованию для выполнения определенных операций (приспособления для закрепления заготовки и режущего инстру­мента, контрольные приспособления и т.д.).

Режущие инструменты - это орудия производства, используемые для осуществления процесса обработки заготовок на станках.

Режущие инструменты можно разделить на две группы:

1. Лезвийные инструменты, имеющие четко выраженную режущую кромку (токарные и строгальные резцы, сверла, метчики, развертки, протяжки и т.д.).

2. Абразивные инструменты, у которых форма режущих зерен имеет случайный характер (шлифовальные круги, хонинговальные бруски, полирующий ин­струмент и т.д.).

2.6.1. Общие сведения. В машиностроительном производ-стве технологический процесс (англ. – manufacturing process) – это часть производственного процесса, содержащая целе-направленные действия по изменению и (или) определению состояния предмета труда. Технологический процесс может быть отнесен к изделию, его составной части или к методам обработки, формообразования, сборки.

Основной составной частью технологического процесса является технологическая операция (англ. – operation), вы-полняемая на одном рабочем месте. Она является структур-ной исходной единицей для расчёта времени и денежных за-трат на технологический процесс в целом.

Параллельно существующее понятие «технологический метод» представляет собой совокупность правил, опреде-ляющих последовательность и содержание действий при выполнении формообразования, обработки или сборки, пе-ремещения, включая технический контроль, испытания в технологическом процессе изготовления или ремонта, уста-новленных безотносительно к наименованию, типоразмеру или исполнения изделия.

2.6.2. Технологическая документация. Технологический документ – это графический или текстовой документ, кото-рый отдельно или в совокупности с другими документами определяет технологический процесс или операцию изго-товления детали.

Оформление технологического документа представляет собой комплекс процедур, необходимых для составления и подготовки технологического документа в соответствии с порядком, установленным на предприятии. К подготовке документа относится его подписание, согласование и т. д.

2.6.3. Комплектность технологических документов. Комплект документов технологического процесса (опера-ции) представляет собой совокупность технологических до-кументов, необходимых и достаточных для выполнения тех-нологического процесса (операции).

Комплект проектной технологической документации – это совокупность технологической документации для проек-тирования и реконструкции предприятия.

Стандартный комплект документов технологического процесса (операции) состоит из комплекта технологических документов, установленных в соответствии с требованиями стандартов государственной системы стандартизации.

2.6.4. Степень детализации технологических процессов. Маршрутное описание технологического процесса представ-ляет собой сокращенное описание всех технологических операций в последовательности их выполнения, но без раз-деления операций на составные элементы (переходы) и без указания режимов обработки.

Режим обработки – это набор условий, при которых реализуется обработка. Основными параметрами, состав-ляющими режим, например обработки резанием, являются глубина резания, то есть толщина срезаемого слоя за один приём; подача (перемещение) инструмента, например, за каждый оборот обрабатываемой детали; скорость резания, предопределяющая степень интенсивности ухода стружки из очага резания; принятый способ отвода тепла из очага ре-зания и ряд других параметров

Маршрутно-операционное описание технологического процесса представляет собой сокращённое изложение техно-логических операций с сохранением их последовательности при полном описании отдельных операций.

2.6.5. Влияние организации производства на технологи-ческие процессы и операции. Технологические процессы по своему составу и глубине проработки отдельных элементов процесса существенно зависят от типа машиностроительно-го производства. Имеются в виду массовое, серийное и еди-ничное производства.

Каждый тип машиностроительного производства имеет свои характерные особенности, определённым образом влияющие на проектируемый технологический процесс. Так, в массовом производстве за каждым станком постоянно за-креплена только одна технологическая операция. Поэтому все составные части проектируемого технологического про-цесса прорабатывают очень подробно, и от рабочих, выпол-няющих каждую операцию, не требуется высокая квалифи-кация. В свою очередь, оборудование в цехе располагают по ходу действий, указанных в технологическом процессе. Этим упрощается передача обрабатываемой детали от стан-ка к станку. Складываются условия для организации поточ-ного (непрерывного) производства. Длительность каждой операции, а также степень равномерной и полной загрузки станков обеспечивают технологическими приёмами, закла-дываемыми в проектируемый технологический процесс. Здесь имеют в виду кратность отрезка времени, затрачивае-мого на каждую операцию, число станков на одну и ту же операцию и т.п.

Однако следует иметь в виду, что полностью загрузить большое количество станков обработкой одной детали мож-но только при достаточно большой программе выпуска продукции. Само собой разумеется, что программа должна быть устойчивой, то есть ориентированной на достаточно длительный период спроса продукции, по крайней мере дос-таточный для самоокупаемости затрат на организацию мас-сового производства.

Одним из основных критериев массового производства является такт выпуска продукции.

Такт выпуска (англ. – production time) – интервал време-ни, через который периодически производится выпуск изде-лий или заготовок определённых наименования, типоразме-ра и исполнения.

Определённое значение имеет также ритм выпуска (англ. – production rate) – количество изделий или заготовок определённых наименований, типоразмеров и исполнения, выпускаемых в единицу времени.

В серийном производстве за каждым станком закреплено больше одной операции, а цех и каждый его участок заняты обработкой нескольких или многих деталей. Но программа выпуска каждой детали мала для того, чтобы организовы-вать поточное производство.

Подбирая номенклатуру деталей для каждого участка, стараются подобрать детали примерно одинаковых габарит-ных размеров со схожей конфигурацией (валы, зубчатые ко-лёса, корпусные детали и т.д.), одинакового материала (сталь, алюминиевые сплавы, магниевые сплавы).

Однородность перечисленных характеристик предопре-деляет сходство технологических процессов. Это позволяет уменьшить разнообразие станков на участке и способствует возможности максимально загрузить станки.

Закрепление за станком нескольких технологических операций предопределяет неизбежность последующей пере-наладки, то есть замены технологической оснастки для того, чтобы перейти к обработке других деталей. Поэтому в се-рийном производстве детали обрабатывают партиями, то есть группами одноименных деталей. Выполнив одну опе-рацию для партии деталей, станок переналаживают для вы-полнения очередной операции.

Чем разнообразнее технологические процессы, выпол-няемые на участке, тем труднее на участке расположить станки в наиболее выгодном порядке. Поэтому в серийном производстве чаще всего представляется целесообразным располагать станки в большем соответствии с последова-тельностью этапов технологического процесса (черновые операции, чистовые, окончательные).

В серийном производстве заняты рабочие главным обра-зом средней квалификации.

По сравнению с массовым производством в серийном производстве увеличен объём так называемого незавершён-ного производства, то есть накапливаются детали, ждущие очередного передвижения к местам дальнейших этапов об-работки. Соответственно, возрастает длительность произ-водственного цикла,

Цикл технологической операции (англ. – operation cycle) – интервал календарного времени от начала до конца перио-дически повторяющейся технологической операции незави-симо от числа одновременно изготовляемых или ремонти-руемых изделий.

Единичное производство характерно тем, что оно ориен-тировано на изготовление чрезвычайно широкой номенкла-туры самых разнообразных деталей, каждая из которых вы-пускается единицами экземпляров. По этой причине все ис-пользуемые средства производства отличаются повышенной универсальностью с применением рабочей силы высокой квалификации. За каждым станком закрепляется максималь-но возможное количество технологических операций.

По принципу единичного производства организованы опытные цехи и заводы, находящиеся в непосредственном распоряжении опытно-конструкторских организаций, заня-тых созданием и разработкой новой продукции.

Наличие высококвалифицированной рабочей силы ис-ключает необходимость подробной детализации, как техно-логических операций, так и технологического процесса в целом. То есть технологический процесс в ряде случаев дос-таточно представлять в виде сокращённого маршрутного описания всех действий, составляющих технологический процесс. Этим сокращается объём работы инженерно-тех-нического персонала на составление технологической доку-ментации, а также в определённой мере компенсируются расходы, связанные с привлечением высококвалифициро-ванной рабочей силы.

В свою очередь, независимо от типа машиностроитель-ного производства, сформировались конкретные наимено-вания технологических процессов.

Единичный технологический процесс изготовления или ремонта изделия одного наименования, типоразмера и ис-полнения, независимо от типа производства.

Типовой технологический процесс изготовления группы изделий с общими конструктивными и технологическими признаками.

Групповой технологический процесс изготовления груп-пы изделий с разными конструктивными, но общими техно-логическими признаками

Типовая технологическая операция, характеризуемая единством содержания и последовательности технологиче-ских переходов для группы изделий с общими конструктив-ными и технологическими признаками.

Групповая технологическая операция совместного изго-товления группы изделий с разными конструктивными, но общими технологическими признаками.

2.7. Технологическая система

2.7.1. Структура технологической системы. В общем случае технологическая система состоит из обрабатывае-мого и обрабатывающего начал, находящихся в техниче-ском окружении, необходимом и достаточном для того, что-бы при вводе энергии реализовывался запланированный тех-нологический процесс.

Структурными основными единицами технологической системы являются следующие её элементы.

Технологическое оборудование (англ. – manufacturing equipment) – средства технологического оснащения, в кото-рых для выполнения определенной части технологического процесса размещают материалы или заготовки, средства воздействия на них, а также технологическая оснастка. Примерами технологического оборудования являются ли-тейные машины, прессы, станки, печи, гальванические ван-ны, испытательные стенды и т.д.

Технологическая оснастка (англ.– tooling) – средства тех-нологического оснащения, дополняющие технологическое оборудование для выполнения определённой части техно-логического процесса. В состав технологической оснастки входят режущий инструмент и приспособления.

Инструмент (англ. – tool) – технологическая оснастка, предназначенная для воздействия на предмет труда с целью изменения его состояния. Состояние предмета труда опре-деляется при помощи меры и (или) измерительного прибора.

В свою очередь, различают основной инструмент, непо-средственно взаимодействующий с обрабатываемым объек-том (например, резец) и вспомогательный инструмент (на-пример, оправка, несущая на себе этот резец и являющаяся связующим звеном между резцом и местом крепления этого резца на станке).

Приспособление (англ. – fixture) – технологическая осна-стка, предназначенная для установки или направления предмета труда или инструмента при выполнении техноло-гической операции. Фактически приспособление является устройством для расширения технологических возможно-стей применяемого оборудования.

Перечисленные структурные элементы показывают, что термин «технологическая система» по своей сути эквива-лентен понятию «вещественные факторы производитель-ных сил», используемому экономическими теориями при анализе процессов развития общественного производства.

В то же время в машиностроении вещественные факторы производительных сил часто называют средствами техно-логического оснащения (СТО). При этом имеют в виду, что в составе этих средств значатся только технологическое обо-рудование, технологическая оснастка и средства механи-зации и автоматизации реализуемого технологического процесса. Таким образом, инструмент и предмет труда не входят в состав СТО. Тем не менее, при выборе каждого из структурных составляющих системы СТО неизбежно учи-тывают основные факторы, относящиеся и к инструменту, и к предмету труда. Это следует из стандартных рекоменда-ций, касающихся выбора каждого их структурных состав-яющих системы СТО.

а) Выбирают технологическое оборудование на основа-нии анализа подлежащих обработке поверхностей изготов-ляемых деталей и перечня методов обработки, каждый из которых реально может быть использован в рассматривае-мом случае. Выбор наиболее эффективного метода обработ-ки предопределяют технико-экономические и эксплуатаци-онные требования к изготовляемой детали.

Оборудование должно обеспечивать высокопроизводи-теьный процесс за счёт

– одновременной обработки несколькими инструмента-ми;

– одновременной обработки одним инструментом не-скольких деталей (или нескольких поверхностей);

– совмещения нескольких операций.

При этом действия, связанные с контролем геометриче-ских параметров детали, с контролем станка и состоянием обрабатывающего инструмента, а также с коррекцией точ-ности обработки и переналадкой станка стремятся по вре-мени совместить с основным действием, а именно: обработ-кой поверхностей изготавливаемых деталей.

б) Агрегатирование средств технологического оснаще-ния. При частой сменяемости изготовляемой продукции (в среднесерийном и мелкосерийном производствах) необхо-дима быстрая замена состава средств технологического ос-нащения. Быстрота замены и переналадки оснащения ха-рактеризуется понятием «гибкость производства».

Для сокращения времени па переналадку все элементы СТО проектируют и изготовляют, применяя принцип агре-гатирования. То есть все элементы СТО изготовляют в виде унифицированных многоцелевых, и в ряде случаев, обрати-мых модулей

Принцип агрегатирования предполагает выполнение комплекса работ в последовательности:

– анализ планируемых технологических операций с це-лью выявить возможность применения известных типовых методов обработки;

– анализ объектов обработки, классификация их с выде-лением типовых представителей (например, поверхности плоские, криволинейные; детали - болты, гайки и т.д.);

– составление схем рабочих движений обработки и пере-мещения предметов труда;

– разделение конструкций СТО на элементы и узлы обра-тимой конструкции;

– установление необходимых условий связи между эле-ментами и узлами по соответствующей компоновочной схе-ме;

– определение номенклатуры входящих в СТО деталей,-узлов и агрегатов многократного применения;

– издание альбомов и каталогов деталей, узлов и агрега-тов СТО.

Основным критерием целесообразности любых решений по агрегатированию СТО является технико-экономическая эффективность от их создания и практического применения.

в) Комплектуют технологическую оснастку, опираясь на предварительный анализ:

– характеристики изготовляемых деталей (конструкция, размеры, материал, требуемые точность и качество);

– технологических и организационных условий изготов-ления детали (схема ориентации и закрепления детали в зоне обработки);

– оптимизации степени загрузки и интенсивности работы, как самой оснастки, так и используемого оборудования вплоть до условий для непрерывного труда;

– полного соответствия оснастки её целевому назначению и техническим характеристикам применяемого оборудова-ния;

– способности оснастки обеспечивать интенсивность эксплуатации и полную загрузку станка.

В общем случае оснастка может быть выбрана из перечня имеющейся номенклатуры, либо оснастку следует спроекти-ровать и изготовить вновь. Но всегда оснастка должна обес-печивать труд с высокой производительностью.

г) Средства механизации. Выбор этих средств ведут с учётом того, что механизация предполагает главным обра-зом вытеснение ручного труда и замену его машинным тру-дом в тех звеньях, где он до сих пор остаётся как среди ос-новных технологических операций, так и среди операций вспомогательных, зачастую отличающихся большой трудо-ёмкостью и наличием ручной работы. Механизация ведёт к сокращению производственного цикла, повышению произ-водительности труда и к улучшению экономических показа-телей.

При выборе средств механизации учитывают

– плановые сроки и трудоемкость выпуска продукции;

– плановую продолжительность выпуска продукции;

– организационные формы производства в период освое-ния и выпуска продукции.

Выбор средств всегда сопровождается технико-эконо-мическими расчётами затрат на производство в течение все-го периода его реализации.

2.7.2. Роботизация оснастки. По мере развития техники на смену механизации отдельных технологических действий постоянно приходит автоматизация с целью повысить про-изводительность труда и освободить оператора от тяжелых и утомительных операций. В первую очередь это коснулось массового производства, ориентированного на выпуск большого количества однородной продукции, где не требу-ется частых переналадок технологического оснащения. А в малосерийном и серийном производствах темп автоматиза-ции заметно сдерживается из-за высокой стоимости, как са-мих разработок автоматизированных устройств, так и из-за длительности переналадки этих устройств на выпуск оче-редных партий другой продукции. Однако высокий темп

роста производительности станочного оборудования посто-янно ставит вопрос о необходимости сокращать время на выполнение сопутствующих вспомогательных операций, ха-рактеризующихся для оператора трудоёмкостью, утомляе-мостью, плохими условиями труда. Автоматизированное устройство для вспомогательных операций получило назва-ние робот. Соответственно, в машиностроении возникла новая отрасль – робототехника.

Роботы, предназначенные для замены человека на опас-ных для здоровья, физически тяжёлых и утомительных руч-ных работах, получили название промышленные роботы (ПР). Первый ПР появился в США в 1961 году под названи-ем «Рука Эрнста». В нашей стране первый ПР «Универсал-50» разработан в 1969 году.

В 1980 году общий парк ПР в мире составлял около 25 тыс. штук, а через 5 лет их стало в мире около 200 тыс. штук, что свидетельствует об уже тогда возникшей потреб-ности быстрого роста производительности труда.

В зависимости от участия человека в процессе управле-ния роботом выделяют группы биотехнических и автоном-ных (автоматических) роботов .

К биотехническим роботам относятся дистанционно управляемые копирующие роботы; роботы, управляемые че-ловеком с пульта управления, и полуавтоматические роботы.

Дистанционно управляемые копирующие роботы снаб-жены задающим органом (например, манипулятором, пол-ностью идентичным исполнительному органу), средствами передачи сигналов прямой и обратной связи и средствами отображения информации для человека-оператора о среде, в которой функционирует робот.

Копирующие роботы выполняются в виде антропо-морфных конструкций, обычно «надеваемых» на руки, ноги или корпус человека. Они служат для воспроизведения дви-жений человека с некоторыми необходимыми усилиями и

имеют иногда несколько десятков степеней подвижности.

Роботы, управляемые человеком с пульта, снабжаются системой рукояток, клавиш или кнопок, связанными с ис-полнительными механизмами, соответствующими каналами по различным обобщённым координатам. На пульте управ-ления устанавливаются средства отображения информации о среде функционирования робота, в том числе и поступаю-щей к человеку по радиоканалу связи.

Полуавтоматический робот характеризуется сочетани-ем ручного и автоматического управления. Он снабжён су-первизорным управлением для вмешательства человека в процесс автономного функционирования робота путём со-общения ему дополнительной информации (указание цели, последовательности действий и т.д.).

Роботы с автономным (или автоматическим) управле-нием обычно подразделяют на производственные и научно-исследовательские роботы, которые после создания и на-ладки в принципе способны функционировать без участия человека.

По областям применения производственные роботы под-разделяют на промышленные, транспортные, строительные, бытовые и т.п.

В зависимости от элементной базы, структуры, функций и служебного назначения роботы подразделяют на три поко-ления.

1) Роботы первого поколения (программные роботы) имеют жёсткую программу действий и характеризуются на-личием элементарной обратной связи с окружающей средой, что вызывает определённые ограничения в их применении.

2) Роботы второго поколения (очувствленные роботы) обладают координацией движения с восприятием. Они при-годны для малоквалифицированного труда при изготовле-нии изделий.

Программа движений робота требует для своей реализа-ции управляющей ЭВМ. Неотъемлемая часть робота второго поколения – наличие алгоритмического и программного обеспечения, предназначенного для обработки сенсорной информации и выработки управляющих воздействий.

3) Роботы третьего поколения – это роботы с искусст-венным интеллектом. Они создают условия для полной за-мены человека в области квалифицированного труда, обла-дают способностью к обучению и адаптации в процессе ре-шения производственных задач. Эти роботы способны по-нимать язык и вести диалог с человеком, формировать в себе модель внешней среды с той или иной степенью детализа-ции, распознавать и анализировать сложные ситуации, фор-мировать понятия, планировать поведение, строить про-граммные движения исполнительной системы и осуществ-лять их надёжную отработку.

Появление роботов различных поколений не означает, что они последовательно приходят на смену друг друга. Ис-ходя их технико-экономических соображений роботы всех поколений находят свою так называемую «социальную» нишу, применительно к которой робот подвергается совер-шенствованию его функциональных назначений.

2.7.3. Техническое окружение. Опыт машиностроения и анализ многочисленных технологических процессов пока-зывает, что, как понятие СТО, так и понятие «технологиче-ская система», будучи вещественным фактором, не являются исчерпывающими, так как не отражают необходимость учи-тывать целый ряд явлений, без учёта которых технологиче-ский процесс не может состояться. По этой причине наряду с понятием «технологическая система» применяется более общее понятие «техническое окружение», которое рассмат-ривается как своеобразная инфраструктура технологическо-го процесса. Она в присутствии материальных веществ и

предметов в полной мере проявляется ещё и определённым свойством материального мира: силовым полем, магнетиз-мом, температурой, интервалом времени, положительным или отрицательным катализатором и другими свойствами материи . В результате структурные вещественные эле-менты, входящие в состав технического окружения (техно-логическое оборудование, технологическая оснастка, инст-румент, приспособления), должны быть способными прояв-лять определенные явления или иные свойства материи, не-обходимые для достижения намеченной цели, а именно: для реализации запланированного технологического процесса. Так, для магнитно-импульсной штамповки комплект техни-ческого окружения должен располагать условиями для воз-никновения вихревых токов достаточной интенсивности, то есть высокой электропроводностью заготовки. Если элек-тропроводность мала, то на поверхность заготовки со сторо-ны индуктора укладывают тонкий слой металла с высокой электропроводностью (алюминий или медь). То есть вводят в техническое окружение дополнительный элемент, способ-ный вызвать дополнительное свойство материи, нужное для реализации проектируемого технологического процесса.

2.7.4. Отладка и настройка технологической системы. Присутствие в технологической системе упомянутых явлений и иных свойств материи представляется возможным рассмат-ривать как внутренние технологии формируемого техничес-кого окружения.

Опробование спроектированных технологических процес-сов, для реализации, которых требуется определённое техни-ческое окружение, всегда связано с необходимой наладкой внутренних технологий. На примере термоимпульсного уда-ления заусенцев это выглядит следующим образом,

Заусенцы образуются на пересечениях поверхностей в процессе механической обработки деталей.

Сущность прогрессивного процесса термоимпульсного удаления заусенцев состоит в том, что деталь с заусенцами помещают в герметизируемую камеру и сжигают там заряд горючей газовой смеси. Возникающий фронт пламени, омы-вая деталь, сжигает заусенцы. Особенность этого технологи-ческого процесса в том, что горючая смесь, как правило, сго-рает быстрее, чем успевают разогреться заусенцы до темпе-ратуры своего воспламенения. Эта особенность – временной период несоответствия скоростей - указывает на недостаточ-ность технического окружения для реализации термоим-пульсного процесса. Практическая применимость этого про-цесса обеспечена внесением в техническое окружение допол-нительного элемента в виде отрицательного катализатора, способного сдержать темп горения топливной смеси на вре-мя, достаточное для разогрева и сжигания заусенцев. Таким катализатором является дополнительно вводимый в камеру азот. Взамен азота сдержать темп горения топлива представ-ляется возможным за счёт дозированного сброса давления, нарастающего в камере по мере горения топливного заряда. Тогда технологическую систему надо дополнить устройством для дозированного сброса давления.

2.7.5. Влияние технологической системы на технологи-ческий процесс. Технологическую систему формируют для реализации конкретного технологического процесса.

В общем случае технологический процесс представляет собой набор способов и действий, результатом которых явля-ется получаемая продукция. В свою очередь, получаемую продукцию оценивают по ряду показателей. Основными из них являются себестоимость, производительность труда

и ряд эксплуатационных показателей (точность, качество, надёжность, степень полезного использования вводимой энергии, конкурентная способность).

2.7.5.1. Себестоимость оценивают по объёму расходов (в денежном выражении), приходящихся на каждую единицу продукции. На первичном этапе расчёта себестоимости бе-рут во внимание так называемую технологическую себе-стоимость, учитывающую только минимально необходимые расходы на производство без каких-либо неизбежных впо-следствии начислений на стоимость продукции. В таком случае структурными основными элементами для расчета технологической себестоимости (С) являются следующие расходы на единицу продукции:

– расходы М на материал для изготовления продукции;

заработная плата З основному рабочему;

– стоимость И инструмента и необходимых приспособле-ний к нему;

– отчисления А от применяемого оборудования, отнесен-ные к единице продукции;

– стоимость Э энергии, израсходованной на единицу про-дукции;

– отчисления П от стоимости производственной площади, необходимой для создания продукции.

То есть себестоимость С является суммой перечисленных расходов:

С = М + З + И + А + Э + П.

Основной рабочий и производственная площадь не входят в перечень структурных элементов технологической системы, но являются необходимым условием для реализации техноло-гического процесса.

В настоящее время современное машиностроение распо-лагает широким ассортиментом инструмента, технологиче-ского оборудования и видов применяемой энергии. От вы-бора этих структурных элементов технологической системы зависит выбор квалификации основного рабочего (влияние на параметр З) и размеры требуемой производственной площади (показатель П), что в свою очередь предопределя-ется типоразмером требуемого технологического оборудо-вания (показатель А). Таким образом формированием техно-логической системы оказывают существенное влияние на себестоимость С изготовляемой продукции В свою очередь, несколько вариантов технологической системы, отличаю-щихся типами и типоразмерами структурных элементов, для получения одной и той же продукции могут обеспечивать одинаковую себестоимость этой продукции. В этом случае предпочтение отдают тому варианту технологической сис-темы, который сопровождается более высокой производи-тельностью труда.

2.7.5.2. Точность и качество получаемой продукции. В общем случае под точностью понимают степень соответст-вия изготовленной продукции тем условиям и требованиям, которые изложены в документации на изготовление этой продукции. В практике машиностроения степень такого со-ответствия используется в качестве критерия для оценки уровня технологической дисциплины на предприятиях (на-ряду с административной дисциплиной и ответственно-стью).

По мере необходимости понятие точность конкретизи-руют и указывают, например, точность геометрической формы, точность геометрических размеров, точность взаим-ного расположения обработанных поверхностей и т.д.

Диапазон требований, охватываемых понятием качество

обработки, достаточно широкий и многообразный. Напри-мер, при обработке металлов резанием из-за силового воз-действия инструмента на обработанной поверхности детали остаются следы инструмента в виде микронеровностей - шероховатость. Высота шероховатости зависит от инстру-мента и параметров способа резания. По этой высоте судят о качестве обработанной поверхности.

К качеству обработки относят и появления наклепа (то есть повышенной твёрдости на некоторую глубину в тело детали вдоль под обработанной поверхностью), также яв-ляющегося следствием силового воздействия инструмента на обработанную поверхность. Величину наклёпа устанав-ливают, измеряя твёрдость обработанной поверхности.

В машиностроении очень часто все точностные и качест-венные показатели получаемой продукции характеризуют единым общим понятием качество продукции. Широко распространенные в производстве приёмы контроля качества направлены на то, чтобы тиражируемые объекты производст-ва были бы между собой идентичными по основным эксплуа-тационным параметрам и характеристикам. Систематическая бурная созидательная деятельность человечества, как ни странно, замыкается всего лишь на трех создаваемых объек-тах производства. Это – вещество, предмет (устройство) и технология. Исходные для получения объекта материалы и полуфабрикаты характеризуются наличием определенных качественных характеристик, предопределяющих свойства, и количественных параметров, сопутствующих этим свойст-вам.

Соответственно, создаваемый объект тоже получает в ка-ких-то соотношениях определенное число этих характери-стик и свойств, которые получили обобщенные названия – качество и количество. Находясь в создаваемом объекте в определенном соотношении, качество и количество состав-ляют меру, то есть создаваемый объект.

Соотношение между количеством и качеством может изменяться в некотором диапазоне, который в практике на-зывают допуском на отклонения количественных и качест-венных характеристик. Тиражируемые объекты, находящие-ся в пределах этого допуска, считаются идентичными и пригодными для работы в задаваемых эксплуатационных условиях. При выходе параметров из этого допуска исход-ное соотношение качества и количества нарушается и воз-никает новая мера (новый объект). Чаще всего в инженер-ной практике этот новый объект представляет собой брак исправимый, если остается возможность довести объект до требуемой кондиции, или окончательный брак, то есть по-лучен негодный для намеченной цели объект. Во избежание брака и для повышения эксплуатационных свойств вырабо-талась система мероприятий, направленных на контроль ка-чества создаваемых объектов. Сюда вошли технические требования, виды достаточного контроля, стандартизация системы мер, проверок и применяемого технического и тех-нологического оснащения. Сущностью всех этих мероприя-тий является стремление создавать тиражируемые объекты идентичными и способными надежно обеспечивать назна-ченный ресурс работы.

Соответственно вопросу контроля качества стали уделять внимание на всех этапах создания объектов, начиная с про-ектных работ и кончая передачей объектов в эксплуатацию.

Появившаяся в обиходе компьютерная техника дала воз-можность накапливать большие объемы информации (базы данных) и на этапе проектных работ эффективно ее анали-зировать для выбора оптимальных соотношений качествен-ных и количественных параметров у создаваемых объектов. В результате предположительно выявилась возможность расширить функции контроля качества тиражируемой про-дукции, а именно: преобразовать этот контроль в один из

приемов, способствующих созданию объектов с новым уровнем свойств. Здесь имеются в виду свойства, необходи-мые и достаточные, чтобы техническое решение о создании объекта соответствовало нормам, предъявляемым к изобре-тениям.

Широкие возможности компьютерной техники явились основой для мнения о том, что именно компьютерная техни-ка придет на смену творческому коллективу проектных ор-ганизаций, создающих объекты с новым уровнем свойств по сравнению с аналогами.

Однако статистика показывает, что бесспорной оказалась только резко возросшая производительность проектных ра-бот, а количество технических решений, полученных на ос-нове системы автоматического проектирования (САПР) в проектных организациях и закрепляемых патентами на изо-бретение объектов с новым уровнем свойств, заметно мень-ше, чем в организациях, дополнительно располагающих мощной экспериментальной базой. Это объясняется, по крайней мере, двумя основными причинами.

1) Мощность любого банка данных никогда не может быть исчерпывающей, потому что производство как одна из составляющих материального мира под активным воздейст-вием человека развивается постоянно и достаточно стреми-тельно, всегда опережая скорость восполнения банков дан-ных.

2) Новый уровень свойств создаваемого объекта никогда не является простым сложением количественных и качест-венных параметров, характерных для исходных компонент создаваемого объекта. Поэтому предварительные расчетно-теоретические прогнозы, как правило, не подтверждаются экспериментально. Это относится, прежде всего, к тем объ-ектам, новизна которых состоит в качестве, предопреде-ляющем новый принцип действия.

Введение
1.Машина как объект производства
2 Производственный процесс и его структура
3 Технологический процесс и его структура
4 Типы производства и их характеристика
Заключение
Список использованных источников

Введение

В основе производственного процесса лежит технологический процесс. Он включает в себя все операции обработки, связанные непосредственно с изменением формы, размеров и свойств изготовляемого изделия, выполняемые а определенной последовательности. Различают такие технологические процессы: обработка давлением, механическая обработка, термическая обработка, сборка и многие другие. На заводе технологические процессы и технологическую документацию разрабатывает отдел главного технолога. Правильно разработанные технологические процессы обеспечивают выполнение всех операций по изготовлению промышленной продукции с минимальными затратами материалов, труда и энергии.

Виды производств. Для этого типа производства характерно применение универсального оборудования, на котором обрабатываются разнообразные по форме и величине детали, универсальные приспособления и измерительный инструмент, значительное количество ручных работ, использование высококвалифицированных рабочих. Себестоимость деталей на таких заводах значительно выше, чем на заводах с иным характером производства, а производительность труда намного ниже. Типичными представителями такого типа производства являются заводы тяжелого машиностроения, турбинные, судостроительные, химического машиностроения и др. Кроме того, на современных машиностроительных заводах с массовым и серийным характером производства имеются экспериментальные цеха, где создаются новые образцы машин в одном или нескольких экземплярах, что характерно для индивидуального производства.

Серийное производство характеризуется выпуском определенных партий (серий) одинаковых изделий, которые повторяются через определенные промежутки времени, применением высокопроизводительного специального оборудования, приспособлений, оснастки и инструмента. В зависимости от размера партии (серии) выпускаемых изделий различают три типа серийного производства: крупносерийное, которое по своему характеру приближается к массовому, среднесерийное и мелкосерийное. Типичными представителями заводов серийного производства являются тепловозостроительные, станкостроительные и др. Массовое производство характеризуется выпуском большого количества одинаковых изделий (машин) на протяжении длительного времени, узкой специализацией рабочих мест, применением высокопроизводительного специального оборудования (автоматических линий, станков-автоматов и полуавтоматов, агрегатных станков), а также специальных оснастки, приспособлений и инструментов, широкой взаимозаменяемостью деталей.

К заводам этого типа относятся автомобиле- и тракторостроительные, завод поршней и др. Принципы поточного производства. В машиностроении различают две формы организации производства: поточное и непоточное. Характерной особенностью поточного производства является закрепление за рабочими местами выполнения определенных операций, расположение рабочих мест в технологической последовательности выполнения операций обработки. При этом до минимума сокращается время на передачу детали с одного рабочего места к другому. Поточная форма организации производства свойственна заводам серийного и массового производства. Пели за рабочими местами операции не закреплены и оборудование установлено независимо от технологической последовательности обработки, то это является характерными чертами непоточного производства.

Элементы технологического процесса

Всякий технологический процесс состоит из отдельных элементов. Такими элементами являются: операция, установка, позиция, переход, проход, рабочий прием. Под технологической операцией понимают часть технологического процесса обработки заготовки, выполняемую на одном рабочем месте (станке) одним инструментом (резцом, напильником и т. п.) одним или несколькими рабочими. В зависимости от объема выполняемой работы операции могут быть простыми и сложными. Сложную операцию можно разбить на отдельные составные части, называемые установками.

Таким образом, установка - это часть операции, которая выполняется на станке (рабочем месте) при неизменном креплении заготовки. Позиция представляет собой часть операции, которая выполняется при одном неизменном положении заготовки относительно инструмента (не считая перемещении, связанных с рабочими движениями заготовки или инструмента). Часть операции по обработке одной или одновременно нескольких поверхностей заготовки, которая выполняется при неизменных режиме станка и инструменте (или нескольких инструментах), называется переходом. Проходом называется часть перехода, при котором снимается один слой металла или другого материала. Рабочим приемом называется законченное действие рабочего при выполнении операции (закрепление или снятие заготовки, режущего инструмента и т. п.).

Многопозиционная обработка. Высокой производительности труда на машиностроительных заводах при механической обработке достигают благодаря широкому внедрению прогрессивных технологических процессов, применения специального высокопроизводительного оборудования, приспособлений и инструмента. В зависимости от тина производства и имеющегося оборудования обработку деталей можно выполнять двумя различными методами: на небольшом количестве различных станков и на сравнительно большом количестве станков, каждый из которых выполняет только одну определенную операцию. Обработка деталей по первому методу получила название метода концентрированных (укрупненных) операций, а по второму - метода дифференцированных (расчлененных) операций.

Отличительной чертой метода укрупненной обработки является объединение нескольких переходов в одной более сложной операции. Например, сокращение количества перестановок деталей на станке и выполнение заданной обработки за одну установку, одновременное сверление нескольких отверстий в различных плоскостях и т. п. Высшей степенью развития метода укрупнения операции является многопозиционная обработка деталей на автоматических поточных линиях и на агрегатных станках, что является характерным для массового и крупносерийного производства.

Однако метод укрупнения операций успешно применяется и в условиях единичного и мелкосерийного производства: при обработке тяжелых и крупных деталей, при наличии зажимных приспособлений, которые требуют при закреплении деталей больших физических усилий рабочего, при установке сложных заготовок, для правильности выверки которых требуется затрата большого количества времени и т. п. При этом требуется более высокая квалификация рабочих и предъявляются более высокие требования к рабочему месту. Совмещению нескольких операций на одном станке способствует применение многоместных приспособлений, много шпиндельных головок, комбинированных инструментов (комбинированных сверл, зенкеров и т. п.).

1.Машина как объект производства

Машиностроение является одной из ведущих отраслей народного хозяйства. Объектами производства машиностроительной промышленности являются различные виды машин. Понятие о «машине» формировалось на протяжении многих столетий по мере развития науки и техники. С давних времен под машиной понимали устройство, предназначенное для действия в нем сил природы сообразно потребностям человека. В настоящее время понятие «машина» расширилось и трактуется с разных позиций и в различном смысле. Например, с точки зрения механики машина ­ это механизм или сочетание механизмов, выполняющих целесообразные движения для преобразования энергии, материалов или производства работ.

Появление электронно-вычислительных машин, стихийно причисленных к классу машин, вынудило рассматривать машину как устройство, выполняющее определенные целесообразные механические движения для преобразования энергии, материалов, производства работ или же для сбора, передачи, хранения, обработки и использования информации. Все машины и различные механические устройства создавались с целью замены или облегчения физического и умственного труда человека. С точки зрения технологии машиностроения машина может быть либо объектом, либо средством производства. Поэтому для технологии машиностроения понятие «машина» можно определить как систему, созданную трудом человека для качественного преобразования исходного продукта в полезную для человека продукцию. Процесс преобразования может вестись механическим, физическим, химическим путем как каждым в отдельности, так и в сочетаниях. В зависимости от области использования и функционального назначения различают энергетические, производственные и информационные машины.

В энергетических машинах один вид энергии превращается в другой. Такие машины обычно называют двигателями. Гидравлические турбины, двигатель внутреннего сгорания, паровые и газовые турбины относят к так называемым тепловым двигателям. Электрические двигатели постоянного и переменного тока составляют группу электрических машин. Число типов производственных машин достаточно велико. Это объясняется разнообразием производственных процессов, выполняемых этими машинами. Различают строительные, грузоподъемные, землеройные, транспортные и другие машины. Самую большую группу составляют технологические или рабочие машины. К ним можно отнести, например, металлорежущие станки, текстильные и бумагоделательные машины, полиграфическое оборудование и др. Для технологических машин характерны периодически повторяющиеся перемещения их рабочих органов, которые непосредственно выполняют производственные операции. К рабочим органам машины необходимо непрерывно подводить механическую энергию. При этом двигатель (чаще всего электрический) и рабочие органы машины соединяются с помощью специальных устройств, называемых механизмами. Механизмы являются составной частью как энергетических, так и производственных машин.

В современных энергетических машинах используют простые виды движений (вращательные, возвратно-поступательные), поэтому в них применяется небольшое число типов механизмов. Наоборот, число типов механизмов, используемых в современных производственных машинах, достаточно велико. Это объясняется большим разнообразием типов движений их рабочих органов. Машина-двигатель, передаточный механизм и исполнительная машина, спроектированные как одно целое и установленные на общей раме или фундаменте, представляют собой машинный агрегат. Огромное значение для развития всех отраслей современного производства имеет все более широкое внедрение методов автоматического контроля производственных процессов. Устройства, используемые для этой цели, называют приборами. Отдельной группой устройств, изменяющих состояние предмета труда без непосредственного участия рабочего, являются аппараты.

В аппаратах происходят различные химические, тепловые, электрические и другие процессы, необходимые для обработки или изменения свойств обрабатываемых деталей. Рабочие устройства аппаратов, как правило, неподвижны. Иногда аппараты включают устройства для транспортирования обрабатываемых объектов (транспортеры термических печей, различные загрузочные и дозирующие устройства и др.). Группу информационных машин составляют вычислительные, измерительные, контрольно-управляющие и др. Энергетические и информационные машины изучаются в специальных курсах соответствующих специальностей. Машины, механизмы, отдельные узлы и детали в процессе производства их на машиностроительном предприятии являются изделиями. Изделием в машиностроении называют любой предмет или набор предметов производства, подлежащих изготовлению на данном предприятии.

Изделием может быть машина, ее элементы в сборе и отдельные детали, если они являются продуктом конечной стадии данного производства. Например, для автомобильного завода изделием является автомобиль, для завода редукторов – редуктор, для завода поршней – поршень и т.п. Изделия могут быть неспецифицированными (не имеющими составных частей) и специфицированными (состоящими из двух и более частей). Деталь ­ это изделие, изготавливаемое из однородного по наименованию и марке материала без применения сборочных операций. Характерным признаком детали является отсутствие в ней разъемных и неразъемных соединений. Деталь представляет собой комплекс взаимосвязанных поверхностей, выполняющих различные функции при эксплуатации машины. Детали машин различного функционального назначения отличаются формой, размерами, материалом и др. Вместе с тем независимо от функционального назначения детали машин имеют общее свойство производственного характера ­ они являются продуктом производства, формирующего их из исходных заготовок и материалов.

Кроме отдельных машин и их частей объектами производства машиностроительных предприятий могут быть комплексы и комплекты изделий. Комплексом называют два и более специфицированных изделия, не соединенных на предприятии-изготовителе сборочными операциями, но предназначенных для выполнения взаимосвязанных эксплуатационных функций, например: бурильная установка, автоматическая линия, цех-автомат и т.п. Комплект ­ это два и более изделий, не соединенных на предприятии-изготовителе сборочными операциями и представляющих набор изделий, которые имеют общее эксплуатационное назначение вспомогательного характера, например: комплект запасных частей, комплект инструмента и принадлежностей, комплект измерительной аппаратуры и т.п. Группу составных частей изделия, которые необходимо подать на рабочее место для сборки изделия или его составной части, называют сборочным комплектом. Изделие предприятия-поставщика, применяемое как составная часть изделия, которое выпускается предприятием-изготовителем, называют комплектующим изделием. Для моторного завода комплектующими изделиями могут быть, например, стартеры, генераторы, прерыватели-распределители и др. Одной из важнейших характеристик выпускаемой продукции является ее качество. При этом в соответствии с ГОСТ 15467­79 под качеством промышленной продукции понимается совокупность свойств, обусловливающих ее пригодность удовлетворять определенные потребности в соответствии с ее назначением. Качество продукции фиксируется на определенный период времени с помощью различных нормативных документов, главным образом стандартов, и изменяется при появлении более прогрессивных технологий. Качество продукции относится к числу важнейших показателей производственно-хозяйственной деятельности промышленного предприятия. Именно качество продукции обусловливает финансовую и экономическую устойчивость предприятия, темпы научно-технического прогресса, экономию материальных и трудовых ресурсов. Во всех странах мира выпуск продукции высокого качества рассматривается как одно из важнейших условий развития национальной экономики. Снижение качества приводит к уменьшению объема продаж, прибыли и рентабельности, к снижению экспорта и другим нежелательным последствиям.

2. Производственный процесс и его структура

Промышленное производство является наиболее крупной и ведущей областью сферы материального производства. Оно представляет собой систему взаимосвязанных отраслей, занятых добычей и переработкой промышленного и сельскохозяйственного сырья в готовую продукцию, необходимую для общественного производства и личного потребления. Машиностроительное производство основано на преимущественном применении при выпуске продукции методов технологии машиностроения. Основной продукцией машиностроения являются металлорежущие станки, автомобили, тракторы, сельскохозяйственные машины, оборонная продукция, оборудование для энергетики, строительная техника и другие виды машин и механизмов. Машиностроительное производство в целом представляет собой множество организационно и экономически самостоятельных производственных единиц, называемых предприятиями машиностроения. Машиностроительное предприятие является сложноорганизованной, целенаправленной системой, объединяющей людей и орудия производства для обеспечения выпуска изделий.

Процесс изготовления машин и механизмов на машиностроительном предприятии состоит из комплекса работ, в результате которых исходные материалы и полуфабрикаты превращаются в готовое изделие. Отдельные виды исходных материалов, деталей и узлов (подшипники, электродвигатели, гидроавтоматика, резинотехнические изделия и др.) машиностроительный завод может получать в качестве комплектующих изделий от других промышленных предприятий. Совокупность всех действий людей и орудий производства, необходимых для изготовления или ремонта изделий на данном предприятии, называют производственным процессом. Производственный процесс современных машиностроительных предприятий представляет собой единый взаимосвязанный комплекс работ, охватывающих подготовку средств производства и организацию обслуживания рабочих мест, процессы получения исходных заготовок и готовых деталей, процессы сборки, испытания, технического контроля, хранения, транспортировки, упаковки и сбыта готовой продукции, а также другие виды работ, связанные с выпуском продукции. В зависимости от значения и роли в изготовлении продукции различают основные, вспомогательные и обслуживающие производственные процессы. Основной процесс обеспечивает производство товарной продукции. Он непосредственно связан с изготовлением деталей и сборкой из них машин и механизмов. В ходе основных производственных процессов сырье и материалы превращаются в готовую продукцию заданного качества. К основному производству относятся, например, обработка заготовок на металлорежущих станках, химическая и химико-термическая обработка, ковка, штамповка, сварка, сборка и др.

Вспомогательные процессы обеспечивают стабильную и ритмичную работу основного процесса и заняты изготовлением продукции и оказанием услуг, необходимых основному производству. К этим работам относят, например, изготовление металлорежущих инструментов и технологической оснастки, наладка и ремонт оборудования, изготовление контрольно-измерительных инструментов, заточка инструмента, обеспечение предприятия электрической и тепловой энергией, сжатым воздухом, углекислым газом, кислородом, ацетиленом и другие виды работ. Изделия основного производства предназначены для реализации по договорам и на свободном рынке, а изделия вспомогательного производства используются только внутри предприятия-изготовителя. Обслуживающие процессы должны обеспечивать бесперебойную и ритмичную работу всех подразделений предприятия. К ним относятся меж­ и внутрицеховой транспорт, погрузочно-разгрузочные работы, складирование и хранение сырья, материалов, комплектующих изделий, уборка цехов и территории предприятия. Сюда можно отнести также заводские лаборатории, лечебные учреждения, столовые и др.

В зависимости от технической оснащенности, т.е. в зависимости от участия рабочего производственные процессы подразделяются на ручные, ручные механизированные, машинно-ручные, машинные, автоматизированные и аппаратурные. В случае ручных процессов воздействие на предмет труда осуществляется рабочим с помощью каких-либо инструментов, но без применения любых источников энергии. Это, например, заворачивание гайки ключом, сверление отверстия ручной дрелью.

Ручные механизированные процессы характеризуются тем, что технологические операции выполняются рабочим с помощью ручных механизированных орудий труда, т.е, с использованием каких-либо источников энергии, например, сверление отверстий электродрелью, зачистка литья переносным наждачным кругом и т.п. К машинно-ручным относятся процессы, когда воздействие на предмет труда производится с помощью машины или механизма, но при обязательном участии рабочего, например, сверление отверстия на сверлильном станке с ручной подачей.

Машинные процессы осуществляются на машинах, станках и других видах технологического оборудования без непосредственного участия рабочего, а роль рабочего при этом заключается в обеспечении машины материалом, снятии готовой продукции, пуске и остановке оборудования и пр.

Автоматизированные производственные процессы выполняются на станках-автоматах, автоматизированных поточных линиях и других видах автоматизированного оборудования, а роль рабочего в этом случае сводится к контролю за ходом процесса и выполнению пуско-наладочных работ. Аппаратурные процессы имеют место тогда, когда воздействие на предмет труда происходит каким-либо видом энергии ­ тепловой, химической, электрической. К этим видам процессов можно отнести, например, металлургические процессы, термическую и химико-термическую обработку, приготовление пара, сушку, различные химические процессы. Рабочие в этом случае наблюдают за работой аппаратов и при необходимости вмешиваются в ход протекающих в них процессов. В зависимости от стадии изготовления, т.е. от места в процессе изготовления изделия, различают заготовительные, обрабатывающие и сборочные производственные процессы. Заготовительные процессы превращают сырье и материалы в исходные заготовки, по форме и размерам приближающиеся к готовым деталям.

В машиностроении это, например, литейные, кузнечно-штамповочные цехи, цехи по первичной обработке проката. Обрабатывающими являются процессы, в ходе которых заготовки превращаются в готовые детали, форма, размеры и свойства которых заданы конструктором на чертеже. К этой фазе относятся обработка заготовок на металлорежущих станках, термическая и химико-термическая обработка, гальванические, окрасочные и другие работы. Сборка узлов, агрегатов и отдельных деталей в готовые изделия производится в отдельных цехах или на отдельных участках цехов. Кроме того, в производственном процессе предусматриваются контроль качества, регулирование и испытание изготовленной продукции, т.е. проверка тех параметров, которые и определяют ее качество, назначение и применение.

Производственную деятельность завода осуществляют входящие в его состав цехи, участки, различные службы и подразделения, в которых изготовляется, проходит контрольные проверки и испытания основная продукция, комплектующие изделия, материалы и полуфабрикаты, запасные части для обслуживания изделий и ремонта их в процессе эксплуатации. Цех является основной производственной единицей машиностроительного предприятия. При этом по ГОСТ 14.004­83 под цехом понимают совокупность производственных участков. Цех характеризуется выполнением работ технологически однородного вида, наличием определенного типажа технологического оборудования и определенных видов профессий рабочих. Например, в механических цехах производят обработку деталей машин резанием на металлорежущих станках, профессии рабочих ­ токари, фрезеровщики, сверловщики, расточники и др.

Цех является обособленным в административном отношении звеном, выполняющим определенную часть общего производственного процесса изготовления продукции. Цехи осуществляют свою деятельность на принципах хозяйственного расчета. Производственный участок ­ это группа рабочих мест, организованных по предметному, технологическому или предметно-технологическому принципам. В зависимости от выполняемых функций и роли в изготовлении продукции цехи, как правило, подразделяются на производственные, вспомогательные и обслуживающие. Кроме того, почти на каждом машиностроительном предприятии имеются подразделения, занимающиеся повышением производственной квалификации рабочих, инженерно-технических работников, специалистов. Состав цехов и служб предприятия с указанием связей между ними называют его производственной структурой.

Особую роль в производственной структуре предприятия играют конструкторские бюро, научно-исследовательские и испытательные станции, В них разрабатываются конструкции новых изделий, новые технологические процессы, проводятся экспериментальные исследования и опытно-конструкторские работы, проводится доработка конструкции изделия и т.п. Производственная структура цеха определяется главным образом конструктивными и технологическими особенностями продукции цеха, объемом выпуска продукции, формой специализации цеха и его кооперированием с другими цехами. Основными элементами производственной структуры цеха являются участки и линии, обеспечивающие изготовление деталей и сборку узлов и изделий, составляющих производственную программу цеха и завода. Кроме основных производственных участков и линий в состав цехов входят также вспомогательные отделения и службы, обеспечивающие функционирование производственных участков. Это, например, отделения и участки по восстановлению режущего инструмента, его ремонта, цеховая ремонтная база по техническому обслуживанию и ремонту оборудования, сбора и переработки стружки, контрольные и испытательные отделения и др. Основные производственные участки могут создаваться по принципу технологической и предметной специализации.

На участках, организованных по принципу технологической специализации, выполняют технологические операции определенного вида. Например, в механическом цехе могут быть организованы токарный, фрезерный, шлифовальный, слесарный и другие участки, в сборочном ­ участки узловой и окончательной сборки изделий, испытаний их частей и систем, контрольно-испытательные станции и др. На участках, организованных по принципу предметной специализации, осуществляют не отдельные виды операций, а технологические процессы в целом, вследствие чего получают законченную продукцию для данного участка. Например, выделяют участок по обработке корпусных деталей, валов, зубчатых и червячных колес, метизов и т.п. В некоторых случаях за цехом или участком закрепляют технологический процесс изготовления отдельного изделия или какой-либо ограниченной номенклатуры изделий, например, цехи редукторов, муфт, коробок передач и т.п. В этом случае детали и узлы распределяют по отдельным цехам или участкам цехов в зависимости от их массы, сложности, функционального назначения или других признаков. Установка и расположение оборудования на таких участках осуществляется по ходу технологического процесса изготовления определенных деталей или готовых изделий.

Машиностроительные предприятия в зависимости от степени их технологической специализации подразделяются на два вида.

1. Предприятия, полностью охватывающие все стадии процесса изготовления изделия. В состав такого предприятия входят основные предприятия по всем стадиям производственного процесса, начиная от заготовительных до сборочных включительно.

2. Предприятия, не полностью охватывающие все стадии изготовления изделия. В производственной структуре такого предприятия отсутствуют некоторые цехи, относящиеся к той или иной стадии основного производственного процесса. Такое предприятие может иметь только основные заготовительные цехи, выпускающие отливки, поковки или штамповки, поставляемые в порядке кооперации другим машиностроительным предприятиям; или же только сборочные цехи, выполняющие сборку изделий из деталей, узлов, поставляемых в порядке кооперации другими предприятиями; или только механообрабатывающие цехи, которые из заготовок, получаемых от других предприятий, изготовляют детали или узлы и передают их для окончательной сборки и испытания другим машиностроительным предприятиям.

Предприятия с неполной производственной структурой имеют обычно более высокой уровень технологической специализации, чем предприятия с полной производственной структурой. Рационально организованный технологический процесс изготовления изделия должен обеспечивать заданное качество продукции и производительность труда, а также ритмичность работы, стабильность качества во времени и выпуск продукции в требуемом объеме. При решении вопросов развития производства, его технического перевооружения и реконструкции особенно важно правильно определить наиболее перспективные объекты производства, потребность рынка в этих объектах как в ближайшее время, так и на длительную перспективу. Вся научно-техническая, производственная и сбытовая деятельность предприятия должна быть направлена на выпуск конкурентоспособных и пользующихся спросом изделий, в том числе и на мировом рынке.

3. Технологический процесс и его структура

Важнейшим элементом производственного процесса является технологический процесс. Технологическим процессом называют часть производственного процесса, содержащую целенаправленные действия по изменению и последующему определению состояния предмета труда. Под изменением состояния предмета труда понимают изменение его физических, механических, химических свойств, геометрических размеров, внешнего вида. В зависимости от содержания различают технологические процессы получения заготовок, изготовления деталей, сборки отдельных узлов и машины в целом, окраски машины и др. Последующее определение состояния предмета труда означает последовательный контроль производственного «изменения» предмета производства.

По последовательности выполнения различают технологические процессы изготовления исходных заготовок, их обработки и сборки изделий. В технологическом процессе изготовления заготовок происходит превращение материала в исходные заготовки деталей машин путем литья, обработки давлением, резки сортового проката, а также комбинированными методами. В результате технологического процесса обработки в определенной последовательности происходит непосредственное изменение состояния обрабатываемой заготовки, т.е. изменение ее размеров, формы или физико-механических свойств. При этом под обработкой понимают действие, направленное на изменение свойств предмета труда при выполнении технологического процесса.

К отдельным видам обработки можно отнести, например, обработку резанием, обработку давлением, термическую обработку, поверхностное упрочнение деталей и др. Совокупность значений параметров технологического процесса в определенном интервале времени называется технологическим режимом. При обработке резанием, например, параметрами технологического режима являются скорость резания, глубина резания и подача; при термической обработке ­ скорость нагрева, температура нагрева, длительность выдержки и скорость последующего охлаждения. Технологический процесс может осуществляться при наличии соответствующих орудий производства, называемых средствами технологического оснащения. При этом к технологическому оснащению относят технологическое оборудование и технологическую оснастку.

Технологическим оборудованием называют средства технологического оснащения, в которых для выполнения определенной части технологического процесса размещают материалы или заготовки, средства воздействия на них, а также технологическая оснастка. К технологическому оборудованию можно отнести, например, литейные машины, металлорежущие станки, нагревательные печи, гальванические ванны, ковочные молоты, испытательные стенды и т.д. Технологической оснасткой называют средства технологического оснащения, дополняющие технологическое оборудование для выполнения определенной части технологического процесса. К технологической оснастке относят режущий инструмент, штампы, приспособления, измерительные средства, модели, литейные формы и др.

Степень прогрессивности технологического процесса можно оценить качественными и количественными показателями. Качественный показатель прогрессивности технологического процесса характеризует его основную идею, технический метод реализации этой идеи, а также степень приближения реального технологического процесса к такой его модели, которая может быть разработана с учетом последних достижений науки и техники. С количественной стороны прогрессивность технологического процесса можно оценить системой показателей, основными из которых по ГОСТ 27782­88 являются коэффициент использования материала, расходный коэффициент, коэффициент раскроя материала. Коэффициент использования материала характеризует степень полезного расхода материала на производство изделия. Расходный коэффициент ­ это показатель, обратный коэффициенту использования материала. Коэффициент раскроя материала характеризует степень использования массы (площади, длины, объема) исходного материала при раскрое по отношению к массе (площади, длине, объему) всех видов полученных заготовок или деталей. Максимально допустимое плановое количество материала на изготовление изделия при установленном качестве и условиях производства составляет норму расхода материала на изделие.

В составе нормы расхода следует учитывать массу изделия (полезный расход материала), технологические отходы и потери материала. Отходы могут быть использованы в качестве исходного материала для производства других изделий или реализованы в качестве вторичного сырья. Потери материала характеризуют количество безвозвратно теряемого материала в процессе изготовления изделия. Массу технологических отходов и потерь материала регламентируют в технологической документации.

Ранее отмечалось, что производство машин на машиностроительных предприятиях осуществляется в результате выполнения комплекса взаимосвязанных технологических процессов, являющихся частями общего производственного процесса предприятия. Для выполнения технологического процесса создается рабочее место, представляющее собой участок производственной площади цеха, оборудованный в соответствии с выполняемой на нем работой. Рабочее место является элементарной единицей структуры предприятия, где размещены исполнители работы, обслуживаемое технологическое оборудование, часть конвейера, устройства для хранения заготовок и изделий, изготовленных на данном рабочем месте, а на ограниченное время ­ технологическая оснастка и предметы труда. Т

ехнологический процесс обычно расчленяется на части, называемые операциями. Технологической операцией называют законченную часть технологического процесса, выполняемую на одном рабочем месте. Операция охватывает все действия оборудования и рабочих над одним или несколькими совместно обрабатываемыми или собираемыми объектами производства. Так при обработке на станках операция включает все действия рабочего по управлению станком, а также автоматические движения станка, связанные с процессом обработки заготовки до момента снятия ее со станка и перехода к обработке другой заготовки. Число операций в технологическом процессе зависит от сложности конструкции детали или собираемого изделия и может изменяться в достаточно широких пределах.

К отдельным операциям обработки можно отнести, например, сверление, точение, фрезерование, развертывание, нарезание резьбы метчиком и др. Как видно, операция характеризуется неизменностью рабочего места, технологического оборудования, предмета труда и исполнителя. При изменении одного из этих условий имеет место новая операция. Однако изменение рабочего места не всегда является критерием законченности операции. Например, обработка на двух сверлильных станках-дублерах, где необходимо постоянное присутствие по одному рабочему возле каждого станка, означает наличие двух рабочих мест, но выполнение одной и той же операции, если на этих станках выполняется одна и та же обработка с одинаковой наладкой оборудования. В случае если черновая обработка детали, например, выполняется одним рабочим на одном станке, а чистовая – другим рабочим на другом станке, то здесь выполняется две операции. Если же и черновая и чистовая обработка выполняется на одном станке, то это будет одна операция. Точение вала, выполняемое последовательно сначала на одном конце, а затем после переустановки его в центрах ­ на другом, является одной операцией.

Следует заметить, что переход к обработке другой заготовки не означает начало новой операции. Заготовка может быть из одной партии с предыдущей. В этом случае операция одна и та же, но повторяется столько раз, сколько заготовок в партии. Поэтому основным критерием другой операции является переналадка станка, т.е. законченность процесса обработки. Необходимость деления технологического процесса на операции обусловлена в основном двумя факторами. Обычно обработать заготовку со всех сторон на одном рабочем месте невозможно. Кроме того, при построении технологического процесса по принципу дифференциации возникает необходимость разделения предварительной и окончательной механической обработки заготовки, поскольку между ними должна быть проведена термическая обработка. С другой стороны по экономическим соображениям нецелесообразно, например, создавать специальный и дорогостоящий станок, позволяющий совмещать на одном рабочем месте проведение многих способов механической обработки. В крупносерийном и массовом производстве при сборке большого числа одинаковых изделий расчленение сборочного процесса на отдельные операции и закрепление каждой из них за отдельным рабочим местом обусловливают узкую специализацию рабочих в выполнении операций, что обеспечивает более высокую производительность труда и позволяет использовать рабочих сравнительно невысокой квалификации.

Содержание операции определяется многими факторами и, прежде всего, факторами организационного и экономического характера. Диапазон работ, входящих в состав операции, может быть достаточно широк. Операцию может составлять обработка всего лишь одной поверхности на отдельном станке. Например, фрезерование шпоночной канавки на вертикально-фрезерном станке. Изготовление сложной корпусной детали на автоматической линии, состоящей из нескольких десятков станков и имеющей единую систему управления, является также операцией. Технологическая операция является основным элементом производственного планирования и учета. По операциям определяют трудоемкость процесса, необходимое оборудование, инструмент, приспособления, квалификацию рабочих. На каждую операцию составляется вся плановая, учетная и технологическая документация.

Операции, входящие в состав технологического процесса, выполняют в определенной последовательности. Содержание, состав и последовательность выполнения операций определяют структуру технологического процесса. Последовательность прохождения заготовки, детали или сборочной единицы по цехам и производственным участкам предприятия при выполнении технологического процесса изготовления или ремонта называют технологическим маршрутом. Структура операции предполагает расчленение ее на составные элементы ­ установы, позиции и переходы. Для обработки заготовки ее необходимо установить и закрепить в приспособлении, на столе станка или другом виде оборудования. При сборке то же самое следует проделать с деталью, к которой должны быть присоединены другие детали. Установ ­ часть технологической операции, выполняемая при неизменном закреплении обрабатываемых заготовок или собираемой сборочной единицы. При каждом повторном снятии заготовки и последующем ее закреплении на станке или же при повороте заготовки на какой-либо угол для обработки новой поверхности имеет место новый установ.

В зависимости от конструктивных особенностей изделия и содержания операции она может быть выполнена либо с одного, либо с нескольких установов. В технологической документации установы обозначаются буквами А, Б, В и т.д. Например, при обработке вала на фрезерно-центровальном станке фрезерование торцов вала с двух сторон и их зацентровку выполняют последовательно за один установ заготовки. Полная обработка заготовки вала на токарно-винторезном станке может быть осуществлена только с двух установов заготовки в центрах, так как после обработки заготовки с одной стороны (установ А) ее необходимо открепить, установить в новом положении (установ Б) для обработки с другой стороны. В случае поворота заготовки без снятия ее со станка необходимо указывать угол поворота: 45°, 60° и т.д.

Установленная и закрепленная заготовка в случае необходимости может изменять свое положение на станке относительно инструмента или рабочих органов станка под воздействием устройств линейных перемещений или поворотных устройств, занимая новую позицию. Позицией называется каждое отдельное фиксированное положение, занимаемое неизменно закрепленной обрабатываемой заготовкой или собираемой сборочной единицей совместно с приспособлением относительно инструмента или неподвижной части оборудования при выполнении определенной части операции. При обработке заготовки, например, на токарно-револьверном станке позицией будет каждое новое положение револьверной головки.

При обработке на многошпиндельных автоматах и полуавтоматах неизменно закрепленная заготовка занимает различные позиции относительно станка путем вращения стола, последовательно подводящего заготовку к разным инструментам. Технологический переход ­ законченная часть технологической операции, выполняемая одними и теми же средствами технологического оснащения при постоянных технологических режимах и установке. Технологический переход, таким образом, характеризует постоянство применяемого инструмента, поверхностей, образуемых обработкой или соединяемых при сборке, а также неизменность технологического режима. Например, технологическими переходами будут являться получение отверстия в заготовке при обработке спиральным сверлом, получение плоской поверхности детали фрезерованием и т.п. Последовательная обработка одного и того же отверстия в корпусе редуктора расточным резцом, зенкером и разверткой будет состоять соответственно из трех технологических переходов, поскольку при обработке каждым инструментом образуется новая поверхность.

В токарной операции, выполняются два технологических перехода. Такие переходы называют простыми, или элементарными. Совокупность переходов, когда в работе одновременно участвуют несколько инструментов, называют совмещенным переходом. При этом все инструменты работают с одинаковой подачей и при одинаковой частоте вращения заготовки. В случае, когда происходит изменение последовательно обрабатываемых поверхностей одним инструментом с изменением режимов резания (скорости при обработке на гидрокопировальных станках или скорости и подачи на станках с ЧПУ) при одном рабочем ходе инструмента, имеет место сложный переход. Технологические переходы при этом могут выполняться последовательно или параллельно-последовательно. При обработке заготовок на станках с ЧПУ несколько поверхностей могут последовательно обрабатываться одним инструментом (например, подрезным резцом) при его движении по траектории, задаваемой управляющей программой. В этом случае говорят, что указанная совокупность поверхностей обрабатывается в результате выполнения инструментального перехода.

Примерами технологических переходов в сборочных процессах могут служить работы, связанные с соединением отдельных деталей машины: приданием им требуемого относительного положения, проверкой достигнутого положения и его фиксацией с помощью крепежных деталей. При этом постановку каждой крепежной детали (например, винта, болта или гайки) следует рассматривать как отдельный технологический переход, а одновременное закручивание нескольких гаек с помощью многошпиндельного гайковерта ­ как совмещение технологических переходов. Технологическая операция в зависимости от организации технологического процесса может быть осуществлена на основе концентрации или дифференциации технологических переходов. При концентрации переходов структура операции включает максимально возможное при заданных условиях количество технологических переходов. Такая организация операции сокращает количество операций в технологическом процессе. В предельном случае технологический процесс может состоять лишь из одной технологической операции, включающей все переходы, необходимые для изготовления детали. При дифференциации переходов стремятся к уменьшению количества переходов, входящих в технологическую операцию.

Пределом дифференциации является такое построение технологического процесса, когда в состав каждой операции входит лишь один технологический переход. Характерной особенностью технологического перехода в любых процессах (кроме аппаратурных) является возможность его обособления на отдельном рабочем месте, т.е. выделение его в виде самостоятельной операции. В случае однопереходной операции понятие операции может совпадать с понятием перехода. При организации процесса обработки по принципу дифференциации построения операции (а не перехода) технологический процесс расчленяется на одно-, двух-переходные операции, подчиняющиеся по продолжительности такту выпуска. Если операции (например, зубофрезерная, шлицефрезерная) по длительности выходят за пределы такта выпуска, то ставят станки-дублеры. Следовательно, пределом дифференциации служит такт выпуска. Принцип концентрации операций подразделяется на принцип параллельной концентрации и последовательной. И в том и в другом случае в одной операции концентрируется большое количество технологических переходов, но они распределяются по позициям таким образом, чтобы время обработки на каждой операции было примерно равно или было меньше такта выпуска.

По наибольшему времени по позициям будет определяться норма времени на операцию. По принципу последовательной концентрации все переходы выполняются последовательно, а время обработки определяется суммарным временем по всем переходам. Технологический переход при обработке резанием может состоять из нескольких рабочих ходов. Под рабочим ходом понимают законченную часть технологического перехода, состоящую из однократного перемещения инструмента относительно заготовки, сопровождаемого изменением формы, размеров, качества поверхности или свойств заготовки. Количество рабочих ходов, выполняемых в одном технологическом переходе, выбирают, исходя из обеспечения оптимальных условий обработки, например уменьшения глубины резания при съеме значительных слоев материала. Примером рабочего хода на токарном станке является снятие резцом одного слоя стружки непрерывно, на строгальном ­ снятие одного слоя металла по всей поверхности, на сверлильном ­ сверление отверстия на заданную глубину. Рабочие ходы имеют место в тех случаях, когда величина припуска превышает возможную глубину резания и его приходится снимать за несколько рабочих ходов. При повторении одной и той же работы, например, сверление четырех одинаковых отверстий последовательно, имеет место один технологический переход, выполняемый за 4 рабочих хода; если же эти отверстия выполняются одновременно, то имеет место 4 совмещенных рабочих хода и один технологический переход. В состав операции входят также элементы, связанные с выполнением вспомогательных движений и необходимые для осуществления технологического процесса. К ним относятся вспомогательные переходы и приемы. Вспомогательный переход ­ законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением формы, размеров или свойств поверхности, но необходимы для выполнения технологического перехода.

К вспомогательным переходам относятся, например, закрепление заготовки на станке или в приспособлении, смена инструмента, перемещение инструмента между позициями и др. Для сборочных процессов вспомогательными могут считаться переходы по установке базирующей детали на сборочном стенде или в приспособлении на конвейере, перемещение к ней присоединяемых деталей и др. Для выполнения технологической операции необходимы также вспомогательные ходы и приемы. Вспомогательный ход ­ законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, необходимого для подготовки рабочего хода. Под приемом понимают законченную совокупность действий рабочего, применяемых при выполнении перехода или его части и объединенных одним целевым назначением. Например, вспомогательный переход «установить заготовку в приспособлении» состоит из следующих приемов: взять заготовку из тары, установить в приспособление, закрепить. Вспомогательные ходы и приемы учитываются при изучении затрат вспомогательного времени на выполнение операции. Любой технологический процесс протекает во времени. Интервал календарного времени от начала до конца какой-либо периодически повторяющейся технологической операции независимо от числа одновременно изготовляемых или ремонтируемых изделий называется циклом технологической операции.

Подготовку технологического оборудования и технологической оснастки к выполнению технологической операции называют наладкой. К наладке относятся установка приспособления, переключение скорости или подачи, настройка заданной температуры и т.д. Дополнительную регулировку технологического оборудования и (или) оснастки в процессе работы для восстановления достигнутых при наладке значений параметров называют подналадкой.

4. Типы производства и их характеристика

Машиностроительное производство характеризуется объемом выпуска, программой выпуска продукции, тактом выпуска. Объем выпуска продукции ­ это количество изделий определенных наименований, типоразмеров и исполнений, изготовляемых или ремонтируемых предприятием или его подразделением в течение планируемого периода времени (месяц, квартал, год). Объем выпуска в значительной степени определяет принципы построения технологического процесса. Установленный для данного предприятия перечень изготовляемых или ремонтируемых изделий с указанием объема выпуска и сроков выполнения по каждому наименованию на планируемый период времени называется программой выпуска продукции.

Тактом выпуска называется интервал времени, через который периодически производится выпуск изделий или заготовок определенных наименования, типоразмера и исполнения. Такт выпуска t, мин/шт., определяется по формуле t = 60 Фд/ N, где Фд ­ действительный фонд времени в планируемом периоде (месяц, сутки, смена), ч; N ­ производственная программа на этот же период, шт. Действительный фонд времени работы оборудования отличается от номинального (календарного) фонда времени, поскольку учитывает потери времени на ремонт оборудования. Действительный фонд работы оборудования в зависимости от его сложности и количества выходных и праздничных дней при 40­часовой рабочей неделе и при работе в две смены в машиностроительном производстве составляет от 3911 до 4029…4070 часов. Фонд времени рабочего при этом около 1820 ч.

В зависимости от производственных мощностей и возможностей сбыта продукции изделия на предприятии изготовляют в различных количествах ­ от единичных экземпляров, до сотен и тысяч штук. При этом все изделия, изготовленные по конструкторской и технологической документации без ее изменения, называются серией изделия. В зависимости от широты номенклатуры, регулярности, стабильности и объема выпуска изделий различают три основных типа производства: единичное, серийное и массовое. Каждому из этих типов присущи свои характерные особенности в организации труда и в структуре производственного и технологического процессов. Тип производства является классификационной категорией производства, выделяемой по признакам широты номенклатуры, регулярности, стабильности и объема выпуска продукции. В отличие от типа производства вид производства выделяется по признаку применяемого метода изготовления изделия. Примерами видов производства являются литейное, сварочное, механосборочное и др. Одной из основных характеристик типа производства является коэффициент закрепления операций Кз.о., представляющий собой отношение числа всех различных технологических операций ΣО, выполняемых или подлежащих выполнению в течение месяца, к числу рабочих мест ΣР: Кз.о. = ΣО/ΣР С расширением номенклатуры выпускаемых изделий и уменьшением их количества значение этого коэффициента увеличивается.

Единичное производство характеризуется малым объемом выпуска одинаковых изделий, повторное изготовление и ремонт которых, как правило, не предусматривается. При этом технологический процесс изготовления изделий либо совсем не повторяется, либо повторяется через неопределенные промежутки времени. По единичному типу производства выпускаются, например, крупные гидротурбины, прокатные станы, оборудование для химических и металлургических заводов, уникальные металлорежущие станки, опытные образцы машин в различных отраслях машиностроения, ремонтные цеха и участки и др.

Технология единичного производства характеризуется применением универсального металлорежущего оборудования, которое располагается в цехах обычно по групповому признаку, т.е. с разбивкой на участки токарных, фрезерных, шлифовальных станков и т.д. Обработку ведут стандартным режущим, а контроль ­ универсальным измерительным инструментом. Характерным признаком единичного производства является концентрация на рабочих местах разнообразных операций. При этом на одном станке часто производится полная обработка заготовок разнообразных конструкций и из различных материалов. Ввиду необходимости частой перенастройки и наладки станка на выполнение новой операции доля основного (технологического) времени в общей структуре нормы времени на обработку сравнительно невелика.

Отличительные особенности единичного производства обусловливают относительно низкую производительность труда и высокую себестоимость выпускаемых изделий. Серийное производство характеризуется изготовлением или ремонтом изделий периодически повторяющимися партиями. При серийном производстве одноименные или однотипные по конструкции изделия изготовляют по отработанным на технологичность чертежам. Продукцией серийного производства являются машины установившегося типа, выпускаемые в значительных количествах. К этой продукции можно отнести, например, металлорежущие станки, двигатели внутреннего сгорания, насосы, компрессоры, оборудование для пищевой промышленности и др. Серийное производство является наиболее распространенным в общем и среднем машиностроении.

В серийном производстве наряду с универсальным широко используется и специальное оборудование, автоматы и полуавтоматы, станки с ЧПУ, специальный режущий инструмент, специальные измерительные приборы и приспособления. В серийном производстве средняя квалификация рабочих обычно ниже, чем в единичном производстве. В зависимости от количества изделий в партии или серии и значения коэффициента закрепления операций различают мелкосерийное, среднесерийное и крупносерийное производство. Такое подразделение является достаточно условным для различных отраслей машиностроения, так как при одном и том же количестве машин в серии, но различных размеров, сложности и трудоемкости производство может быть отнесено к разным типам. Условной границей между разновидностями серийного производства по ГОСТ 3.1108­74 является величина коэффициента закрепления операций Кз.о.: для мелкосерийного производства 20 < Кз.о.< 40, для среднесерийного ­ 10 < Кз.о.< 20, а для крупносерийного ­ 1 < Кз.о.< 10.

В мелкосерийном производстве, близком к единичному, оборудование располагается преимущественно по типам станков ­ участок токарных станков, участок фрезерных станков и т.д. Станки могут располагаться и по ходу технологического процесса, если обработка ведется по групповому технологическому процессу. Применяют главным образом универсальные средства технологического оснащения. Размер производственной партии обычно составляет несколько единиц. При этом производственной партией принято называть предметы труда одного наименования и типоразмера, запускаемые в обработку в течение определенного интервала времени, при одном и том же подготовительно-заключительном времени на операцию. В среднесерийном производстве, обычно называемом серийным, оборудование располагают в соответствии с последовательностью выполнения этапов обработки заготовок. За каждой единицей оборудования обычно закрепляют несколько технологических операций, при этом возникает необходимость переналадки оборудования. Размер производственной партии составляет от нескольких десятков до сотен деталей.

В крупносерийном производстве, близком к массовому, оборудование, как правило, располагается в последовательности технологического процесса для одной или нескольких деталей, требующих одинакового процесса обработки. При недостаточно большой программе выпуска изделий целесообразно обрабатывать заготовки партиями, с последовательным выполнением операций, т.е. после обработки всех заготовок партии на одной операции производят обработку этой партии на следующей операции. Заготовки после окончания обработки на одном станке транспортируют целой партией или по частям к другому, при этом в качестве транспортных средств используют рольганги, подвесные цепные конвейеры или роботы. Обработку заготовок выполняют на предварительно настроенных станках, в пределах технологических возможностей которых допустима переналадка для выполнения иных операций. В крупносерийном производстве используются, как правило, специальные приспособления и специальный режущий инструмент. В качестве измерительного инструмента широко используют предельные калибры (скобы, пробки, резьбовые кольца и резьбовые пробки) и шаблоны, позволяющие определять годность обработанных деталей и производить разбивку их на размерные группы в зависимости от величины поля допуска.

Серийное производство значительно экономичнее, чем единичное, так как лучше используется оборудование, ниже припуски, выше режимы резания, более высокая специализация рабочих мест, значительно сокращаются цикл производства, межоперационные заделы и незавершенное производство, более высокий уровень автоматизации производства, повышается производительность труда, резко снижается трудоемкость и себестоимость изделий, упрощается управление производством и организация труда. При этом под заделом понимают производственный запас заготовок или составных частей изделия для обеспечения бесперебойного выполнения технологического процесса. Этот тип производства является наиболее распространенным в общем и среднем машиностроении. Около 80 % продукции машиностроения выпускается серийно. Массовое производство характеризуется большим объемом выпуска изделий, непрерывно изготовляемых или ремонтируемых продолжительное время, в течение которого на большинстве рабочих мест выполняется одна рабочая операция.

Детали, как правило, изготовляются из заготовок, производство которых ведется централизованно. Централизованным способом осуществляется производство нестандартного оборудования и технологической оснастки. Поставляют их своим потребителям цехи, являющиеся самостоятельной структурной единицей. Массовое производство экономически целесообразно при выпуске достаточно большого количества изделий, когда все материальные и трудовые затраты, связанные с переходом на массовое производство, достаточно быстро окупаются и себестоимость изделия ниже, чем при серийном производстве. Продукция массового производства ­ это изделия узкой номенклатуры, унифицированного или стандартного типа, выпускаемые для широкого сбыта потребителю. К этой продукции можно отнести, например, многие марки легковых автомобилей, мотоциклов, швейных машин, велосипедов и т.д.

В массовом производстве применяют высокопроизводительное технологическое оборудование ­ специальные, специализированные и агрегатные станки, многошпиндельные автоматы и полуавтоматы, автоматические линии. Широко применяется многолезвийный и наборный специальный режущий инструмент, предельные калибры, быстродействующие контрольные приспособления и приборы. Массовое производство характеризуется также установившимся объемом производства, что при значительной программе выпуска продукции обеспечивает возможность закрепления операций за определенным оборудованием. При этом производство изделий осуществляется по окончательно отработанной конструкторской и технологической документации. Наиболее совершенной формой организации массового производства является поточное производство, характеризуемое расположением средств технологического оснащения в последовательности выполнения операций технологического процесса и определенным тактом выпуска изделий. Для поточной формы организации технологического процесса требуется одинаковая или кратная производительность на всех операциях. Это позволяет производить обработку заготовок или собирать узлы без заделов в строго определенные промежутки времени, равные такту выпуска. Приведение длительности операций к указанному условию называют синхронизацией, что в некоторых случаях предусматривает использование дополнительного (дублирующего) оборудования. Для массового производства коэффициент закрепления операций Кз.о. = 1.

Основным элементом поточного производства является поточная линия, на которой расположены рабочие места. Для передачи предмета труда с одного рабочего места на другое применяют специальные транспортные средства. В поточной линии, являющейся основной формой организации труда поточного производства, на каждом рабочем месте выполняют одну технологическую операцию, а оборудование располагают по ходу технологического процесса (по потоку). Если длительность операции на всех рабочих местах одинакова, то работа на линии выполняется с непрерывной передачей объекта производства с одного рабочего места на другое (непрерывным потоком). Достигнуть равенства штучного времени на всех операциях обычно не удается. Это обусловливает технологически неизбежное различие загрузки оборудования по рабочим местам поточной линии. При значительных объемах выпуска в процессе синхронизации наиболее часто возникает необходимость уменьшения длительности операций. Это достигается за счет дифференциации и совмещения во времени переходов, входящих в состав технологических операций. В массовом и крупносерийном производствах при необходимости каждый из технологических переходов может быть выделен в отдельную операцию, если будет выполнено условие синхронизации. За время, равное такту выпуска, с поточной линии сходит единица продукции.

Производительность труда, соответствующая выделенному производственному участку (линии, участку, цеху), определяется ритмом выпуска. Ритм выпуска ­ это количество изделий или заготовок определенных наименований, типоразмеров и исполнений, выпускаемых в единицу времени. Обеспечение заданного ритма выпуска является важнейшей задачей при разработке технологического процесса массового и крупносерийного производства. Поточный метод работы обеспечивает значительное сокращение (в десятки раз) цикла производства, межоперационных заделов и незавершенного производства, возможность применения высокопроизводительного оборудования, снижения трудоемкости изготовления изделий, простоту управления производством. Дальнейшее совершенствование поточного производства привело к созданию автоматических линий, на которых все операции выполняют с установленным тактом на рабочих местах, оснащенных автоматическим оборудованием. Транспортирование предмета труда по позициям осуществляется также автоматически. Интервал календарного времени от начала до окончания процесса изготовления или ремонта изделия называют производственным циклом. Длительность производственного цикла и ритмичность работы предприятия в значительной степени зависят от организации всего производственного процесса, четкого управления производством и персоналом, своевременного снабжения предприятия сырьем, материалами, инструментом, запасными частями, комплектующими изделиями и другими средствами производства. Важное значение для ритмичности и экономичности работы предприятия имеет своевременная реализация изготовленной промышленной продукции. Следует отметить, что на одном предприятии и даже в одном цехе можно встретить сочетание различных типов производства.

Следовательно, тип производства предприятия или цеха в целом определяется по признаку преимущественного характера технологических процессов. Массовым можно назвать производство, если на большинстве рабочих мест выполняется одна постоянно повторяющаяся операция. Если на большинстве рабочих мест выполняется несколько периодически повторяющихся операций, то такое производство следует считать серийным. Отсутствие периодичности повторения операций на рабочих местах характеризует единичное производство. Кроме того, для каждого типа производства характерным является также соответствующая точность исходных заготовок, уровень отработанности конструкции деталей на технологичность, уровень автоматизации процесса, степень детализации описания технологического процесса и др. Все это влияет на производительность процесса и на себестоимость изготовляемых изделий. Планомерная проводимая унификация и стандартизация изделий машиностроения способствует специализации производства. Стандартизация приводит к сужению номенклатуры изделий при значительном увеличении программы их выпуска. Это позволяет шире применять поточные методы работы и автоматизацию производства. Характеристики производства отражаются в решениях, принимаемых при технологической подготовке производства.

Заключение

Основы организации производства. Под организацией производства понимают координацию и оптимизацию во времени и пространстве всех материальных и трудовых элементов производства с целью достижения в определенные сроки наибольшего производственного результата с наименьшими затратами. Следовательно, организация производства создает условия для наилучшего использования техники и людей в процессе производства, тем самым повышая его эффективность. На каждом промышленном предприятии имеются свои специфические задачи организации производства. Это могут быть, например, вопросы обеспечения сырьем, наилучшего использования рабочей силы, сырья, оборудования, улучшения ассортимента и качества выпускаемой продукции, освоение новых видов продукции и т.п. Поскольку на практике многие задачи организации производства решают технологии, то важно различать функции технологии и функции организации производства.

Технология определяет способы и варианты изготовления продукции. Функцией технологии является определение возможных типов оборудования и технологической оснастки для производства каждого вида продукции, а также оптимальных параметров технологического режима. Таким образом, технологии определяют, что нужно сделать с предметом труда и при помощи каких средств производства, чтобы превратить его в продукт с заданными свойствами. Функцией организации производства является определение конкретных значений параметров технологического процесса на основе анализа возможных вариантов и выбора наиболее эффективного в соответствии с целью и условиями производства. То есть организация производства определяет, как лучше сочетать предмет и орудия труда, а также сам труд, чтобы превратить предмет труда в продукт необходимых свойств с наименьшими затратами рабочей силы и средств производства.

Особенностями организации производства являются рассмотрение во взаимосвязи элементов производства и выбор таких методов и условий их использования, которые в наибольшей степени соответствуют цели производства. Многие вопросы организации производства рассматриваются совместно с технологией. Однако организация производства имеет и присущие только ей задачи. Это, в частности, углубление специализации, быстрая (гибкая) переориентация производства на другие виды продукции, обеспечение непрерывности и ритмичности производственного процесса, совершенствование форм организации производства и др. Кроме того, к задачам организации производства относятся сокращение длительности производственного цикла, бесперебойное снабжение сырьем, материалами, комплектующими изделиями, сбыт готовой продукции, снижение простоя оборудования и обеспечение оптимальной его загрузки, согласование всех звеньев производственного процесса и др.

Совокупность отделов и служб, занимающихся построением и координацией функционирования производственного процесса, называют организационной структурой предприятия. Экономическую эффективность производственной структуры можно оценить такими показателями, как состав и размер цехов, профиль и уровень их специализации, длительность производственного цикла, коэффициент застройки территории, себестоимость и прибыль. Основными факторами, определяющими тип, сложность и иерархичность (т.е. число уровней предприятия) организационной структуры предприятия, являются: масштаб производства и объем продаж; номенклатура выпускаемой продукции; сложность и уровень унификации продукции; степень развития инфраструктуры региона; международная интегрированность предприятия и др. В зависимости от рассмотренных факторов выбирается тип организационной структуры, предполагающий методы планирования работ производственным подразделениям и контроль их выполнения. Для количественного анализа структуры предприятия используются различные показатели, характеризующие объем выпуска продукции, соотношение между основными, вспомогательными и обслуживающими производствами, эффективность пространственного размещения предприятия, характер взаимосвязей между подразделениями, степень централизации отдельных производств и др. Анализ данных показателей позволяет определить пути создания рациональной структуры предприятия, которая должна обеспечивать максимальную возможность специализации цехов и участков, непрерывность и прямоточность производства, отсутствие дублирующих и чрезмерно раздробленных подразделений, возможность расширения и перепрофилирования производства без его остановки.

Список использованных источников

1. Клепиков, В. В. Технология машиностроения: Учебник / В. В. Клепиков, А. Н. Бодров. – М. : ФОРУМ: ИНФРА-М, 2004.
2. Черепахин, А. А. Технология обработки материалов: Учебник / А. А. Черепахин. – М. : Издательский центр «Академия», 2004. – 272 с.
3. Салтыков, В. А. Технологии машиностроения. Технологии заготовительного производства: Учебное пособие / В. А. Салтыков, Ю. М. Аносов, В. К. Федюкин. – СПб. : Изд-во Михайлова В.А., 2004. – 336 с.
4. Маслов, А. Р. Приспособления для металлообрабатывающего инструмента: Справочник, 2-е изд. исправ. и доп. – М. : Машиностроение, 2002. – 256 с.
5. Берлинер, Ю. И. Технология химического и нефтяного аппаратостроения / Ю. И. Берлинер, Ю. А. Балашов. – М. : Машиностроение, 1996. – 288 с.
6. Шишмараев, В. Ю. Машиностроительное производство: Учебник / В. Ю. Шишмараев, Т. И., Каспина. – М. : Издательский центр «Академия», 2004. – 352 с.
7. Аверченков, В. И. Технология машиностроения: Сборник задач и упражнений: Учеб. пособие / В. И. Аверченков, и др. – М. : Инфра-М, 2006. – 288 с.
8. Медведев, В. А. Технологические основы гибких производственных систем: Учебник / В. А. Медведев, В. П. Вороненко, В. Н. Брюханов. – М. : Высшая школа, 2009. – 255 с.
9. Типовые технологические процессы изготовления аппаратов химических производств. Атлас типовых технологических процессов и чертежей / под ред. А. Д. Никифорова. – М. : Машиностроение, 1989. – 244 с.
10. Ярушин, С. Г. Технологические процессы в машиностроении: учебник для бакалавров / С. Г. Ярушин. – М.: Юрайт, 2011. – 564 с.

Реферат на тему “Производственный и технологический процессы в машиностроении” обновлено: Июль 31, 2017 автором: Научные Статьи.Ру

ВВЕДЕНИЕ

Цель и задачи дисциплины, ее место в учебном процессе.

Дисциплина «Основы конструирования технологического оснащения» ставит целью изложение современного опыта проектирования и конструирования технологического оснащения, выбора машин и оборудования машиностроительного производства.

Основные направления развития машиностроения предусматривают дальнейшее повышение его эффективности, интенсификации, уменьшение сроков создания, освоение и производства новой прогрессивной техники. Организационно-методологической основой выполнения поставленной задачи является конструирование машиностроительных изделий с учетом требований технологичности конструкции.

Существует несколько направлений современного проектирования и изготовления машиностроительных изделий, которые непосредственно или косвенно способствуют повышению технологичности конструкций в соответствии с требованиями современного производства. К ним относятся:

1. непрерывно возрастающий объем агрегатного монтажа сборочных единиц, механизмов и оборудования, развитие системы модульного проектирования на базе типизации, унификации и стандартизации;

2. широкое использование ЭВМ, обеспечивающее более высокий уровень анализа конструктивных решений в различных вариантах использования;

3. организация широкого обмена опытом в области создания технологичных конструкций между разными отраслями машиностроения.

Наиболее благоприятны условия для создания технологичной конструкции в тех случаях, когда конструкторский отдел разрабатывает свою техническую идею на основе требований технологии производства, эксплуатации и ремонта.

Процедурная модель проектирования

Главные направления развития технических средств и технологий устанавливается прогнозированием.

Прогнозирование – исследовательский процесс, в результате которого получают вероятностные данные о будущем состоянии прогнозируемого объекта.

С помощью прогнозов определяется предполагаемый ход развития важных процессов в экономике, науке и технике.

В основе прогнозирования лежит предположение, что процессы, события, тенденции, имевшие место в прошлом, действующие в настоящем, будут продолжаться и в будущем. Подобное предположение основано на том, что процессы, действующие в природе, науке и технике, в основном непрерывные и им свойственна некоторая инерционность развития.

Прогнозная тенденция – качественная характеристика развития объекта прогнозирования в прошлом (ретроспективная информация) которая используется для опорных точек построения графика тенденций развития полученный график развития прогнозной тенденции во времени подлежит анализу и математической обработке, выявляется математическая функция и проводится математическая экстраполяция, дающая возможные значения прогнозной тенденции в будущем.

Развитие техники и технологии связано с преемственностью и последовательностью научных разработок. Тщательное прогнозирование развития науки и правильное планирование научных разработок являются ключом НТП.

Техника, развиваясь непрерывно в течение некоторого времени, имеет в целом скачкообразное развитие. В основе скачка лежат открытия или крупные изобретения, коренным образом меняющие существующие принципы в технике и технологии. Они вызывают лавину новых изобретений, совершенствующих новый принцип.

Новые открытия и изобретения продвигают НТП не только в той области, к которой сами относятся, но и в смежных отраслях.

Технология, основанная на данном открытии или изобретении, имеет все предпосылки для бурного, длительного и эффективного использования и развития.

Возникновение новых технологий требует разработки новых средств материального производства и новых конструкторских решений.

Любая технология проходит 3 периода развития.

Сначала технология новая, перспективная и объёмное внедрение постоянно растет(интервал (τ1 - τ2)). В конце этого периода развитие стабилизируется, технология подходит к технической и экономической насыщенности (τ2 - τ3). В этом периоде каждое совершенствование связано со всевозрастающими затратами, при одновременном снижении эффективности.

Наступает момент τ3, при котором дальнейшее техническое развитие не целесообразно, технология становится бесперспективной.

Моральное устаревание технологии I дает толчок изобретению принципиально новой технологии II, по происшествию аналогичного цикла развития которой можно установить пути развития III технологии.

Закономерности циклического развития и смены технологий позволяет установить пути развития и прогнозировать появление новой технологии Ш, которая заменит старые.

Рабочий принцип и структура новой III технологии до ее появления не известны широкому кругу специалистов, но некоторую информацию можно найти в технологических и патентных источников (например, лампы освещения).

Процесс проектирования новой техники во многих отношениях подобен процессу прогнозирования. И в том и в другом случае изучается имеющаяся информация, отражающая всю предыдущую историю проблемы. Результатами разработок являются объекты фантазии человека.

Повышению эффективности проектных решений могут служить использование некоторых принципов применяемых при прогнозировании:

  1. сбор ретроспективной информации с целью выявления тенденций развития параметров;
  2. анализ тенденции развития и попытки вообразить (выяснить) влияние этих тенденций на интересующий разработчика параметр в будущем;
  3. использование ранее разработанных прогнозов, встречающихся в технической информации и позволяющей определить развитие параметра. Эти прогнозы могут относиться непосредственно или косвенно к интересующему разработчику вопроса;
  4. проведение консультаций с крупными специалистами данной отрасли.

В ретроспективную информацию, используемую при определении параметров новых изделий, могут входить: стандарты, промышленные каталоги, статические отчеты, справочники и др.. Особое место занимает патентная информация, обладающая рядом свойств:

· новизна – одна из наиболее отличительных свойств;

· достоверность информации;

· значимость патента относительно информации.

Патентная информация позволяет выявить также, над какими вопросами и направлениями работают специалисты ведущих организаций и стран. Это способствует введению новых разработок на высоком техническом уровне.


ТЕХНИЧЕСКАЯ ПОДГОТОВКА ПРОИЗВОДСТВА

Понятие о технической подготовке производства

Создание новой техники – путь долгий и трудоемкий, не одна идея сразу не находит применения, т.к. это вызвано сложностью структуры новой техники и ее действия. Создание новой техники требует комплексного подхода в технической подготовке производства, которая состоит из трех видов:

1. организационная подготовка

2. конструкторская подготовка (ЕСКД)

3. техническая подготовка (ЕСТПП)

Организационная подготовка определяет собой совокупность работ по организации научных исследований, научного прогнозирования, патентных исследований, технико-экономических исследований, оценки технических возможностей предприятия и отрасли, учету конъектуры рынка как внутри страны, так и за рубежом. Учитываются также потребности капиталовложений и сроки их окупаемости, возможность выделения этих средств на разработку и освоение новых изделий. Кроме того определяются предприятия смежники, прорабатываются вопросы материально-технического снабжения и кадрового обеспечения, прорабатываются вопросы организации эксплуатации, техобслуживания, и ремонта разрабатываемых изделий и многое другое.

Анализ понятий конструирования и проектирования

Разработка новых изделий осуществляется инженерно-техническим персоналом, путем проектирования и конструирования, которые являются процессами взаимосвязанными и дополняющими друг друга. Конструктивная форма объекта уточняется методом проектирования – произведением расчета параметров, прочностных расчетов оптимизации и другими проекционными вопросами. В свою очередь проектирование возможно только предварительно принятых вариантов конструкций. Часто эти два понятия не различают, поскольку они выполняются специалистами одной профессии – инженерами-конструкторами, однако проектирование и конструирование – процессы разные.

Проектирование предшествует конструкции и представляет собой поиск научно обоснованных технически осуществимых и экономически целесообразных инженерных решений. Результатом проектирования является проект разрабатываемого объекта. Проектирование – выбор некоторого способа действия, в частном случае – это создание системы как логической основы действия, способной решать при определенных условиях и ограничениях поставленную задачу. Проект анализируется, обсуждается, корректируется и принимается как основа дальнейшей разработки.

Конструирование – это создание конкретной однозначной конструкции изделия.

Конструкция – это устройство, взаимное расположение частей и элементов какого-либо предмета, машины, прибора, определяющиеся его назначением. Конструкция предусматривает способ соединения, взаимодействия частей, а также материал, из которого отдельные части (элементы, детали) должны быть изготовлены.

В процессе конструирования создаются изображения и виды изделий, рассматривается комплекс размеров с допустимыми отклонениями. Выбирается соответствующий материал, устанавливается требования к шероховатости поверхностей, технические требования изделия и его частям, создается техническая документация.

Конструирование опирается на результаты проектирования и уточняет все инженерные решения, принятые при проектировании. Создаваемая в процессе конструирования техническая документация должна обеспечить перенос всей конструкторской информации на изготавливаемые изделия и его рациональную эксплуатацию.

Проектирование и конструирование – это виды умственной деятельности, когда в уме разработчика создается конкретный мысленный образ, который подвергается мысленным экспериментам, включающих перестановку и вариацию составных частей, их геометрию и параметры, способы смещения и размещения. Одновременно оценивается эффект внесенных изменений.

Разработка, составными частями которой являются проектирование и конструирование, этот термин широко применяется в технической литературе, включает ведение НИР, проектно-конструкторских работ, разработку технологии изготовления, материально техническое обеспечение и организация производства.

Цели, задачи разработки

Целью разработки нового изделия является удовлетворение общественных потребностей. Каждая разрабатываемая конструкция или изделие должно удовлетворять трем основным требованиям:

1. техническим

2. социальным

3. экономическим

Эти требования часто носят противоречивый характер, и задача разработчика заключается в том, чтобы из множества возможных решений выбрать одно, наиболее полно отвечающее всему комплексу требований в целом.

В техническом отношении разработка (изделие) должна быть на уровне современных достижений науки и техники, обеспечивать возможность правильно решать определенные технологические и производственные задачи, выполнять соответствующие функции, производить работу (продукцию) необходимого качества и иметь соответствующие параметры (мощность, производительность, скорость и т.д.)

Наряду с определенным уровнем технического совершенства изделие должно отвечать современным социальным требованиям, обеспечивать улучшение условий и облегчения труда обслуживающего персонала, быть безопасным в эксплуатации и не загрязнять окружающую среду. Для облегчения труда предпочтительна механизация и автоматизация работы самого изделия, и производственного процесса, выполняемого с его участием (для обеспечения удобства управления, наладки, регулирования рабочих процессов и т.п.)

Одно из центральных мест принадлежит экономическим требованиям . Разработка (изделие) должна быть не только конструктивно и технологически возможна, но и экономически целесообразна.

Разрабатывать с учетом экономических требований значит не только уменьшить стоимость изготовления изделий, избегать сложных и дорогих решений, применять простые и дешевые способы обработки, но главное значение имеет то, что экономический эффект определяется полезной отдачей изделия и суммой эксплуатационных расходов за весь период работы изделия. Стоимость изделия является не всегда главной, а иногда и очень не значительной составляющей этой суммы. Частая экономия, достигаемая без учета всего комплекса стоимостных показателей, не редко ведет к снижению суммарной эффективности изделия.

Стадии разработки нового изделия

Требования к проектируемому (разрабатываемому) конструкции необходимо взаимосвязывать со стадиями разработки конструкторской документации и этапами производственного процесса изготовления. В процессе изготовления и внедрения новых изделий (новой техники) всех отраслей машиностроения выделяют основные этапы:

1) научно-исследовательские работы (НИР);

2) опытно-конструкторские работы (ОКР);

3) опытно-технологические работы (ОТР);

4) освоение серийного производства.

2 - разработка ТЗ;

3 - разработка технического предложения, эскизного и технического проекта;

4 - разработка технической документации на опытный образец;

5 - разработка предварительного технологического проекта;

6 - разработка технологии изготовления опытного образца;

7 - разработка и создание технологической оснастки для изготовления опытного образца;

8 - изготовление и испытание опытного образца;

9 - разработка конструкторской документации па серию;

10 - разработка технологической документации на серию;

11 - разработка и изготовление технологической оснастки на серию;

12 - изготовление установочной партии, начало серийного производства.

В результате НИР (ГОСТ 15.101-80) выбирают оптимальные технические решения для нового изделия с учетом технологии его изготовления; иногда при этом требуется разработка новых материалов, комплектующих изделий и новых технологических процессов.

Исходным документом для проведения ОКР является ТЗ - техническое задание .Общий порядок разработки, согласования и утверждения технических заданий, проведения экспертизы технической документации, испытаний опытных образцов (опытных партий), выдачи разрешений для постановки на производство новых и модернизированных изделий, а также проведения контрольных испытаний изделий серийного и массового производства установлены ГОСТ 15.000-82 и ГОСТ 15.001-73.

В результате ОКР должна быть разработана конструкторская документация.

Конструкторская документация - это графические и текстовые документы, которые в отдельности или в совокупности определяют состав и устройство изделия и содержат необходимые данные для его разработки или изготовления, контроля, приемки, эксплуатации и ремонта.

Виды и комплектность конструкторских документов, разрабатываемых на изделия всех отраслей машиностроения, установлены ГОСТ 2.102-68, стадии разработки ГОСТ 2.103-68, обозначение изделий и конструкторских документов – ГОСТ 2.201-80.

Обязательность выполнения стадий и этапов разработки конструкторской документации устанавливается техническим заданием на разработку.

Проектная конструкторская документация (техническое предложение, эскизный и технический проекты) содержат данные, необходимые для разработки изделия, рабочая конструкторская документация - данные, необходимые для его изготовления.

Технологическую подготовку производства начинают на стадии ОКР. Параллельно с разработкой проектно-конструкторской документации (КД) разрабатывают предварительный проект технологической документации (ТД), включающий основные технологические решения и новые технологические процессы, которые будут приняты при производстве нового изделия. При разработке КД на опытные образцы одновременно разрабатывают технологию и технологическую оснастку для их изготовления. Такая параллельная работа конструкторов и технологов на стадии ОКР ускоряет процесс освоения нового изделия. При этом требуется четкая координация всего комплекса работ по технической подготовке производства (конструкторской, технологической, организационной).

На стадии технического предложения разрабатывают конструкторские документы, обосновывающие предлагаемые варианты технических решений на основе анализа технического задания, с учетом возможности реализации указанных в нем характеристик и требований, дают сравнительные оценки решений разрабатываемых и существующих изделий, а также патентных материалов.

Техническое предложение после согласования и утверждения в установленном порядке является основанием для разработки эскизного или технического проекта (для сокращения сроков проектирования допускается стадию технического предложения совмещать со стадиями эскизного и технического проектов).

На стадии эскизного проекта намечают принципиальную схему конструкции, создают общую компоновку изделия, укрупненно определяют габаритные размеры, устанавливают максимальные размеры и массы наиболее ответственных деталей, выполняют приблизительные расчеты производства. На этой стадии целесообразно привлекать для консультаций технологов. Это позволяет своевременно организовать исследовательские работы, спроектировать или приобрести специальное оборудование, освоить новые процессы.

При эскизном проектировании изделие расчленяют на основные самостоятельные сборочные единицы, Что определяет организационную структуру сборки. На этом же этапе решают существенно важный вопрос - унификацию и использование отдельных сборочных единиц и агрегатов изделий того же класса, а также выбирают материал и вид заготовок (литье, штампосварпые конструкции и т. д.) основных наиболее трудоемких деталей.

Целесообразно выполнить основные технико-экономические расчеты (ТЭР), установить ориентировочную трудоемкость изготовления, себестоимость изделия, основной объем кооперации.

На стадии технического проекта уточняют конструкцию изделия; разрабатывают отдельные сборочные единицы и детали с учетом их размеров, конструктивных форм и точностных характеристик; устанавливают марки материалов и виды заготовок основных деталей; выделяют сборочные единицы и агрегаты конструкции, что определяет характер и порядок сборочных работ; проводят анализ обеспечения беспригоночной сборки, а при необходимости и анализ взаимозаменяемости сборочных единиц и изделия в целом, максимально их унифицируя; назначают виды покрытий и термической обработки исходя из условий работы деталей изделия (сборочной единицы) с учетом технологии их изготовления.

Целесообразно продолжить технико-экономический анализ создаваемой конструкции и, насколько возможно, уточнять трудоемкость изготовления, себестоимость, циклы изготовления и сборки изделия.

На стадии рабочей конструкторской документации разрабатывают чертежи деталей, сборочные чертежи, спецификации, ведомости покупных изделий, технические условия, а при также монтажные, габаритные чертежи, схемы, таблицы, методики расчетов и другие документы (в соответствии с ГОСТ 2.102-68), необходимые для промышленного изготовления изделий.

На этой же стадии отрабатывают рациональные формы и размеры деталей, определяющие виды заготовок, уточняют допуски и устанавливают качество рабочих поверхностей деталей, осуществляют максимально возможную унификацию элементов конструкции (диаметров отверстий, крепежных деталей, резьб, шлицев и др.), что резко сокращает номенклатуру материального и режущего инструментов, а также повышает технологичность изделия. Материалы, применяемые для изготовления деталей, необходимо максимально унифицировать, сокращая число марок и типоразмеров сортового материала (прокат, листы).

Применение новых или нетрадиционныхматериалов, технологические свойства которых еще недостаточно изучены, вызывает значительные затруднения при серийном производстве изделия, поэтому к выбору материалов необходимо привлекать материаловедов для экспериментального изучения и освоения процессов обработки таких материалов.

На этой стадии на первом этапе разрабатывают документацию для изготовления и испытаний опытного образца (опытной партии), корректируют документацию по результатам заводских испытаний, затем вновь изготавливают опытный образец (опытную партию) для проведения государственных, межведомственных и других испытаний с последующей повторной корректировкой конструкторской документации.

На стадии изготовления и испытания опытныхобразцов и серий выполняют дальнейшую отработку конструкций на основе практических результатов изготовления деталей, сборочных единиц и изделия в целом.

После изготовления опытных образцов по результатам приемочных испытаний проводят корректировку и согласование технической документации с присвоением документации литеры в соответствии с требованиями ГОСТ 2.103-68.

На этапе изготовления и испытания установочной серии используют оборудование, предназначенное для серийного производства нового изделия. Установочные серии сдают межведомственной комиссии (МВК), в работе которой принимают участие представители разработчиков, заказчиков, технологических институтов, органов стандартизации и надзора. В отличие от приемки опытных образцов, при приемке установочных серий основное внимание уделяют технологии изготовления нового изделия. По результатам изготовления и испытаний установочной серии корректируют конструкторскую и технологическую документацию.

На заключительном этапе изготавливают и испытывают головную (контрольную) серию с последующей корректировкой технической документации, а затем окончательной отработкой и проверкой полностью оснащенного технологического процесса.

Отработка изделия в основном должна заканчиваться в период освоения серийного производства, когда для обеспечения заданного выпуска изделий внедряют в намеченном объеме всю производственную оснастку и оборудование, включая и специальное, когда производство стабилизируется и обеспечивает высокое качество изделия при минимальной себестоимости.

Техническое задание на проектирование

Техническое задание на проектирование или модернизацию приспособлений должно обобщить все основные требования, предъявляемые к приспособлению и его отдельным элементам. Оно оформляется по общепринятой форме, подписывается и утверждается в установленном порядке.

В техническом задании приводятся следующие сведения:

1.Наименование приспособления.

2.Назначение приспособления.

3.Технические требования, среди которых указываются: место установки приспособления; выделяемая площадь; характеристики энергоносителей (напряжение и род тока, давление воздуха, воды, пара); габариты приспособления; требуемая производительность; перечень деталей и сборочных единиц, собираемых (свариваемых) в приспособлении; условия подачи деталей к приспособлению и выдачи изделия, вид транспортных средств; требования к управлению (расположение пульта, необходимость дистанционного управления); требования по ОТ и ТБ; эргономические требования.

4.Технологический процесс с подробной расшифровкой операций, переходов, и проходов, выполняемых на данном приспособлении или с его помощью.

5.Дополнительные технические требования, характеризующие режим работы приспособления; возможность его переналадки; степень механизации и автоматизации; надёжность; унификацию и стандартизацию; связь с другими приспособлениями; климатические условия эксплуатации; требования к маркировке и упаковке.

6.Экономические показатели от использования приспособления (сметная стоимость, годовой экономический эффект, срок окупаемости капитальных затрат и др.).

7.Рабочие чертежи сварной конструкции.

8.Чертежи заготовок с фактическими размерами (фактическими отклонениями размеров и формы заготовок).

9.Принципиальная схема приспособления.

10.План цеха с разрезами и сеткой колонн с указателями направления движения изделий, подъемно-транспортных средств цеха и мест расположения энергоносителей.

11.Данные об аналогичных приспособлениях.


МЕТОДИКА КОНСТРУИРОВАНИЯ

Исходными материалами для проектирования м. быть:

Техническое задание, выдаваемое заказчиком, определяющее параметры машины или оборудования, область и условия применения;

- техническое предложение, выдвигаемое в инициативном порядке проектной организацией или группой конструкторов;

НИР или созданный на ее основе экспериментальный образец;

Изобретение или патент;

Образец зарубежной машины, подлежащий копированию или воспроизведению с изменениями.

К техническим заданиям необходимо подходить практически. Конструктор обязан проверить задание и в нужных случаях обоснованно доказать необходимость его корректирования.

Машины с неправильно выбранными параметрами (необоснованно завышенными или заниженными) либо не могут быть выполнены, либо устаревают уже к началу серийного выпуска.

Конструктивная преемственность

Конструктивная преемственность - это использование при проектировании предшествующего опыта машиностроения данного профиля и смежных отраслей, введение в проектируемый агрегат всего полезного, что есть в существующих конструкциях машин.

Начальную модель машины постепенно совершенствуют, снабжают новыми конструктивными решениями. Побеждают наиболее прогрессивные и конкурентоспособные конструкции и решения.

Изучая историю развития любой отрасли машиностроения, можно обнаружить огромное многообразие перепробованных схем и конструктивных решений. Многие из них, исчезнувшие и основательно забытые, возрождаются через десятки лет на новой технической основе. Изучение истории позволяет избежать ошибок и повторение пройденных этапов и вместе с тем наметить перспективы развития.

Полезно составлять графики, отображающие изменение по годам главных параметров машин (мощность, производительность, масса и т.д.).

Анализ таких графиков и их экстраполяция позволяют четко представить каковы будут параметры машин и их конструкция через несколько лет.

Основная задача заключается в правильном выборе параметров машины. Частные конструктивные ошибки исправимы в процессе изготовления и доводки машины. Ошибки же в параметрах и в основном замысле машины не поддаются исправлению и нередко ведут к провалу.

Выбору параметров должно предшествовать полное исследование всех факторов, определяющих конкурентоспособность машины. Необходимо изучить опыт выполненных зарубежных и отечественных машин, провести сравнительный анализ их достоинств и недостатков, выбрать правильный аналог и прототип, выяснить тенденции развития и погрешности данной отрасли.

Привод толкателя

Инверсия устраняет поперечные нагрузки на толкатель. Боек можно выполнить цилиндрическим, что дает линейный контакт.

Привод коромысла

Инверсия улучшает смазку соединения (масло в чаше).

Направляющая

Инверсия улучшает смазку.

Крепление шпильки

Инверсия повышает прочность резьбового соединения (податливость бобышки способствует более равномерному распределению нагрузки по виткам).

Ходовой винт.

Облегчается изготовление (нарезание длинной резьбы в отверстии затруднительно). При одинаковом диаметре резьбы прочность винта выше.

Установка шатуна в вилке

Инверсия улучшает условия работы подшипника вследствие увеличения его жесткости и более благоприятного отношения длины к диаметру.

Направляющая шпонка

Шпонка установлена в ступице и перемещается в продольном пазу вала. Схема облегчает изготовление узла и улучшает управление.

Компонование

Компонование обычно состоит из двух этапов: эскизного и рабочего.

В эскизной компоновке разрабатывают основную схему и общую конструкцию агрегата (целесообразно несколько вариантов).

На основании анализа эскизной компоновки составляют рабочую компоновку , уточняющую конструкцию агрегата и служащую исходным материалом для дальнейшего проектирования.

При компоновании важно уметь видеть главное из второстепенного и установить правильную последовательность разработки.

Компоновку следует начинать с решения главных вопросов - выбора рациональных кинематической и силовой схем, правильных размеров и формы основных деталей, определение наиболее целесообразного взаимного их расположения. При компоновании надо идти от общего к частному, а не наоборот. Подробности на этом этапе лишь вредят, т.к. отвлекает внимание и сбивают логику разработки.

Другое основное правило компонования - разработка вариантов, углубленный их анализ и выбор наиболее рационального.

Полная разработка вариантов необязательна. Обычно достаточно карандашных набросков от руки, чтобы получить представление о перспективности варианта и решить вопрос о целесообразности продолжения работы над ним.

В процессе компонования основные детали конструкции должны быть рассчитаны на прочность и жесткость.

Необходимое условие правильного конструирования - постоянно иметь ввиду вопросы изготовления и с самого начала придавать деталям технологически целесообразные формы.

Компоновку необходимо вести на основе нормальных размеров (диаметры посадочных поверхностей, размеры шпоночных и шлицевых соединений, диаметров резьб и т.д.).

При компоновании должны быть учтены все условия, определяющие работоспособность агрегата, разработаны системы смазки, охлаждения, сборки-разборки, крепления агрегата (приспособления) и присоединения к нему смежных деталей (приводных валов, коммуникаций, электропроводки); предусмотрены условия удобного обслуживания, осмотра и регулирования механизмов; выбраны материалы для основных деталей; предусмотрены способы повышения долговечности, износостойкости; исследованы возможности формирования и развития. Полезны перерывы, консультации, критика разработчиков и эксплуатационников.

Техника компонования

Компонование лучше всего вести в масштабе 1:1. При этом легче выбрать нужные размеры и сечения деталей, составить представление о соразмерности частей конструкции, прочности и жесткости деталей и конструкции в целом. Такой масштаб избавляет от необходимости нанесения большого числа размеров и облегчает проектирование, в частности деталировку.

Компоновку простейших объектов можно разрабатывать в одной проекции, в которой конструкция выясняется наиболее полно.

Техника выполнения компоновочных чертежей представляег собой процесс непрерывных поисков, проб, прикидок, разработки вариантов, их сопоставления и отбраковки негодных. Чертить следует со слабым нажимом, не следует тратить время на вырисовывание подробностей и штриховку. Типовые детали и узлы (крепежные изделия, уплотнения, пружины, подшипники качения) целесообразно изображать упрощенно. Обводку чертежа, штриховку, раскрытие условностей изображения и подрисовывание мелких деталей относят на окончательные стадии компонования.

Существует школа компонования от руки на миллиметровке. Оно имеет большие преимущества по производительности, гибкости, легкости внесения поправок; почти полностью исключает возможности ошибок в увязочных размерах и обеспечивает легкое чтение размеров всех деталей.

1. Вычерчивают цветным карандашом контур собираемого изделия в двух-трех проекциях на значительном расстоянии друг от друга.

2. Чертят опоры, упоры, пальцы и другие фиксирующие элементы приспособления так. чтобы базовые поверхности деталей с ними соприкасались.

3. Вычерчивают зажимные механизмы и приводы.

4. Наносят вспомогательные устройства и детали.

5. Оформляют корпус приспособления с учетом удобного размещения всех элементов приспособления.

6. Вычерчивают необходимые разрезы, сечения и виды.

7. Делают увязку приспособления со средствами механизации (межоперационный транспорт, грузоподъемные механизмы).

8. Оформляют чертеж приспособления. Проставляют размеры (габаритные с особой точностью), допуски, составляют спецификации. Указывают технические требования к сборке приспособления.

9. Согласовывают и утверждают чертежи.

В процессе производят необходимые расчеты.


ЖЕСТКОСТЬ КОНСТРУКЦИЙ

Жесткость - это способность системы сопротивляться действию внешних нагрузок с наименьшими деформациями.

Понятием, обратным жесткости, является податливость, т.е. свойство системы приобретать относительно больше деформации под действием внешних нагрузок (пружины, рессоры и Т.Д.)

Жесткость оценивают коэффициентом жесткости, представляющем собой отношение силы Р , приложенной к системе, к максимальной деформации f , вызываемой этой силой.

1) Для случая растяжения - сжатия бруса постоянного сечения в пределах упругой деформации коэффициент жесткости согласно закону Гука:

l = P/ f = σF / f = EF / l,

где F – сечение бруса (мм 2)

l – длина бруса (мм)

Коэффициент податливости

m = f / P = l/ EF.

2) Для случая кручения бруса постоянного сечения коэффициент жесткости:

l кр = M кр / j = GI/ I P ,

где М кр – крутящий момент;

j - угол поворота сечения [рад] бруса на длине l [мм];

I P – полярный момент инерции сечения бруса.

3) Для случая изгиба бруса постоянного коэффициент жесткости:

l ИЗГ = P / f = a(EI/ l 3),

где I – момент инерции сечения бруса;

l – длина бруса (мм);

a – коэффициент, зависит от условий нагружения.

Жесткость системы сильно зависит от условий приложения нагрузки. При заданной нагрузке и заданных размерах системы жесткость определяется максимальной деформацией f .

Расчет рычажных устройств

Кинематические схемы и конструкции рычажных зажимных устройств, применяемых в сборочно-сварочных приспособлениях, настолько многочисленны и разнообразны, что дать универсальный метод их расчета, одинаково пригодный для всех, конечно невозможно.

Рассмотрим расчет схемы рычажного зажимного устройства для сборки тавровых балок.

Усадочные силы, действующие по оси швов:

После сварки первого шва

После сварки обоих швов

Расчетные усилия, возникающие на зажимах кондуктора под действием усадочных сил, будут.

Курс лекций по дисциплине «Технологические процессы в машиностроении»

Лекция 1. Введение.

В современных условиях развития общества одним из самых значимых факторов технического прогресса в машинострое­нии является совершенствование технологии производства. Коренное преобразование производства возможно в результате создания более совершенных средств труда, разработки принципиально новых технологий .

Развитие и совершенствование любого производства в настоящее время связано с его автоматизацией, созданием робототехнических комплексов, широким использованием вычислительной техники, применением станков с числовым программным управлением. Все это составляет базу, на которой создаются автоматизированные системы управления, становятся возможными оптимизация техноло­гических процессов и режимов обработки, создание гибких автомати­зированных комплексов.

Важным направлением научно-технического прогресса является также создание и широкое использование новых конструкционных материалов. В производстве все шире используют сверхчистые, сверхтвердые, жаропрочные, композиционные, порошковые, поли­мерные и другие материалы, позволяющие резко повысить техниче­ский уровень и надежность оборудования. Обработка этих материа­лов связана с решением серьезных технологических вопросов.

Создавая конструкции машин и приборов, обеспечивая на прак­тике их заданные характеристики и надежность работы с учетом экономических показателей, инженер должен уверенно владеть методами изготовления деталей машин и их сборки. Для этого он должен обладать глубокими технологическими знаниями.


Предметом курса «Технология конструкционных материалов» являются современные рациональные и распространенные в промыш­ленности прогрессивные методы формообразования заготовок и деталей машин. Содержание курса представлено на принципе единства основных, фундаментальных методов обработки конструк­ционных материалов: литья, обработки давлением, сварки и обра­ботки резанием. Эти методы в современной технологии конструкцион­ных материалов характеризуются многообразием традиционных и новых технологических процессов, возникающих на их слиянии и взаимопроникновении.

Описание технологических процессов основано на их физической сущности и предваряется сведениями о строении и свойствах конст­рукционных материалов. Комплекс этих знаний обеспечивает уни­версальный подход к изучению технологии.

Большой вклад в развитие металлургии внесли русские ученые и инженеры. Российская металлургия является одной из самых передовых в мире и давно оставила позади самые развитые страны запада. Такие учёные как, является основателем крупнейшего производства литой стали и стальных пушек в России. В 1857 году изобрёл способ массового производства тигельной стали высокого качества.

наиболее полно представил влияние способов и условий ковки на структуру металла, его свойства, образование дефектов. Впервые объяснил образование внутренних напряжений в стали и чугуне.

выдвинул теорию по которой сталь представляет собой твёрдый раствор углерода в железе. Совместно с объяснил процесс ликвации. Впервые в мире применил алюминий для раскисления стали.

основатель современного металловедения. Его открытия – критические температуры, теория кристаллизации слитка, совершенствование конверторного процесса, применение спектроскопа для определения конца процесса производства получили признание во всём мире.

впервые использовал вместо угля газ. Раскрыл рецепт булатной стали, который был утерян. Он в течении 10 лет делал опыты по сплавлению железа с кремнием, золотом, платиной и другими элементами.

Бадаев ёл способ получения новой «бадаевской» стали, которая обладает хорошей вязкостью и свариваемостью.

Взаимосвязь конструкции изделия с технологией его производства обусловила одну из наиболее сложных функций технологически подготовки производства - отработку конструкции изделия н технологичность.

Недостаточно полное и четкое выполнение этой функции на практике является причиной изготовления в промышленности неотработанных на технологичность изделий, что вызывает неоправданные затраты труда, средств, материалов и времени.

На отдельных предприятиях различных отраслей промышленности производится отработка конструкции изделия на технологичность, но методы отработки обычно существенно различаются.

Отсутствие единой методики отработки конструкций на технологичность затрудняет сравнительную оценку технологичности изделий и обмен опытом создания технологичных изделий.

Обязательность отработки конструкций изделий на технологичность на всех стадиях их создания устанавливается стандартами ЕСТПЛ.

Совершенство конструкции машины характеризуется ее соответствием современному уровню техники, экономичностью и удобством в эксплуатации, а также тем, в какой мере учтены возможности использования наиболее экономичных и производительных технологических методов ее изготовления применительно к заданному выпуску и условиям производства. Конструкцию машины, в которой эти возможности полностью учтены, называют технологичной.


Таким образом, технологичность конструкции изделий (ТКИ) - это совокупность таких свойств конструкции изделия, которые определяют ее приспособленность к достижению оптимальных затрат при производстве, эксплуатации и ремонте для заданных показателей качества, объема выпуска и условий выполнения работ .

Отсюда следует, что ТКИ - понятие относительное. Технологичность
одного и того же изделия в зависимости от тина производства, где оно
изготавливается, и от конкретных производственных условий может быть,
различной.

ТКИ - понятие комплексное. Ее нельзя рассматривать изолированно, без взаимной связи и учета условий выполнения заготовительных процессов, процессов обработки, сборки и контроля, ремонта и эксплуатации.

Улучшением технологичности конструкции можно увеличить
выпуск продукции при тех же средствах производства. Трудоемкость
машин нередко удается сократить на 15-25% и более, а себестоимость их
изготовления на 5-10%.

Основная задача обеспечения ТКИ заключается в достижении оптимальных трудовых, материальных и топливно-энергетических затрат на проектирование, подготовку производства, изготовление, монтаж вне предприятия-изготовителя, технологическое и техническое обслуживание, ремонт при обеспечении прочих заданных показателей качества изделия в принятых условиях проведения работ.

Главными факторами, определяющими требования к ТКИ, являются:

· вид изделия, степень его надежности и сложности, условия изготовления, технического ремонта и обслуживания, показатели качества;

· тип производства;

· условия производства, в том числе наличие передового опыта и
прогрессивных методов изготовления аналогичных изделий,
оборудования, оснастки и т. д.

Производственный и технологический процессы.

Под производственным процессом понимают совокупность отдельных процессов, осуществляемых для получения из материалов и полуфабрикатов готовых машин (изделий).

В производственный процесс входят не только основные, т. е. непосредственно связанные с изготовлением деталей и сборкой из них машины, процессы, но и все вспомогательные процессы, обес­печивающие возможность изготовления продукции (например, транспортирование материалов и деталей, контроль деталей, изго­товление приспособлений и инструмента, заточка последнего и т. д.).

Технологическим процессом называют после­довательное изменение формы, размеров, свойств материала или полуфабриката в целях получения детали или изделия в соответ­ствии с заданными техническими требованиями.

Технологический процесс механической обработки деталей яв­ляется частью общего производственного процесса изготовления всей машины.

Производственный процесс разделяется на следующие этапы:

1)изготовление заготовок деталей - литье, ковка, штамповка или первичная обработка из прокатного материала;

3) Норма штучного и штучно-калькуляционного времени полной
обработки и сборки;

4) Основное (технологическое) время по всем операциям.

Технологические характеристика типовых заготовительных процессов.

Технологическая оснастка.

Основы классификации сталей и их маркировка

Стали являются наиболее многочисленными сплавами и широко применяются в промышленности как основной машиностроитель­ный материал.

Стали классифицируют по химическому составу, способу про­изводства и применению.

По химическому составу классифицируют в основном конст­рукционные стали. Согласно этой классификации стали подразде­ляют на углеродистые, хромистые, хромоникелевые и т. д. Другие стали, например инструментальные с особыми физико-химическими свойствами по химическому составу почти не классифици­руют.

По способу производства (определение условий металлурги­ческого производства сталей и содержание в них вредных приме­сей) стали классифицируют на группы А, Б, В и Г.

К ней относятся стали обыкновенного качества. Они могут иметь повышенное содержание серы (до 0,055%) и фосфора (до 0,07%).

Механические свойства сталей обыкновенного качества ниже механических свойств сталей других классов. Основным элемен­том, определяющим механические свойства этих сталей, является углерод. Их выплавляют в кислородных конвертерах и марте­новских печах. Стали обыкновенного качества подразделяют на спокойные (полностью раскисленные), кипящие (не полностью раскисленные) и полуспокойные (занимающие промежуточное по­ложение между спокойными и кипящими). Согласно ГОСТу спо­койные, полуспокойные и кипящие стали обозначают в конце марки буквами, соответственно сп; пс и кн.

К ней относятся качественные стали - углероди­стые или легированные. В этих сталях содержание серы и фос­фора не должно превышать 0,035% каждого. Выплавляют их в основных мартеновских печах.

К этой группе относятся высококачественные стали, главным образом легированные, выплавляемые в электропечах. В этих сталях содержание серы и фосфора не должно превышать 0,025% каждого.

Стали особовысококачественные, выплавляемые в электропечах, электрошлаковым переплавом или другими мето­дами. Содержание серы и фосфора до 0,015% каждого.

По применению стали подразделяют на строительные, машино­строительные (конструкционные, общего назначения), инстру­ментальные, машиностроительные специализированного назначе­ния, с особыми физическими свойствами, с особыми химическими свойствами (устойчивые против коррозии).

Строительные стали - это углеродистые и некоторые низко­легированные стали с небольшим содержанием углерода - стали обыкновенного качества.

Для машиностроительных сталей (конструкционных) общего назначения главной характеристикой являются их механические свойства, которые зависят от содержания углерода, изменяюще­гося в пределах 0,05-0,65%.

Инструментальные стали имеют высокие твердость, прочность и износостойкость. Их используют для изготовления режущего и измерительного инструментов, штампов и т. д. Твердость и вяз­кость зависят от содержания в инструментальных сталях угле­рода.

Машиностроительные стали и сплавы специализированного назначения характеризуются их механическими свойствами при низких и высоких температурах; физическими, химическими и технологическими свойствами. Они могут быть использованы для эксплуатации в особых условиях (на холоде, при нагреве, при ди-намических и гидроабразивных нагрузках и т. п.).

Стали и сплавы с особыми физическими свойствами получают эти свойства в результате специального легирования и термической обработки. Их применяют в основном в приборостроении , электронной, радиотехнической промышленности и т. д.

Стали и сплавы с особыми химическими свойствами (стойкие против коррозии). Стойкости сталей против коррозии достигают при содержании хрома не ниже 12,5-13%. Стали с высоким содержанием хрома и никеля - стойкие в агрессивных средам.

Маркировка сталей. Стали обыкновенного качества обозна­чают марками Ст0 - Ст6. Чем выше номер, тем выше прочностные свойства стали и содержание углерода.

Качественные, высококачественные и особовысококачественные стали маркируют следующим образом. Содержание углерода указывают в начале марки цифрой, соответствующей его содер­жанию: в сотых долях процента для сталей, содержащих до 0,7% С (конструкционные стали), и в десятых долях процента для ста­лей, имеющих более 0,7% С (инструментальные стали). Соответ­ственно сталь, содержащую до 0,1 % С, обозначают как сталь К сталь с 0,5% С - сталь 50, сталь с 1% С - сталь У10.

Легирующие элементы обозначают русскими буквами, на­пример Н (никель); Г (марганец); X (хром); С (кремний) и т. д. Если после буквы нет цифры, то сталь содержит 1,0-1,5% ле­гирующего элемента; если стоит цифра, то она указывает содержание легирующего элемента в процентах, кроме молибдена и ванадия, содержание которых в сталях обычно до 0,2-0,3%.

Различие в обозначении качественной стали по сравнению с высококачественной сталью состоит в том, что в конце марки высококачественной стали ставят букву А: сталь 30ХНМ - ка­чественная, а сталь ЗОХНМА - высококачественная. В конце марки особовысококачественной стали стоит буква Ш.

Для некоторых высококачественных сталей бывают следую­щие отклонения в обозначении:

Общая характеристика свойств инструментальных материалов

Инструментальные материалы должны удовлетворять ряду эксплуатационных требований. Материал рабочей части инстру­мента должен иметь следующие физико-механические характе­ристики: большую твердость и высокие допускаемые напряжения на изгиб, растяжение, сжатие, кручение. Твердость материала рабочей части инструмента должна значительно превышать твер­дость обрабатываемого материала.

Высокие прочностные свойства необходимы для того, чтобы инструмент мог сопротивляться соответствующим деформациям в процессе резания. Одновременно требуется, чтобы материал инструмента был достаточно вязким и воспринимал ударную динамическую нагрузку, которая возникает при обработке хруп­ких материалов или прерывистых поверхностей заготовок.

Инструментальные материалы должны обладать высокой крас­ностойкостью, сохраняя большую твердость при высоких темпе­ратурах нагрева.

Материал рабочей части инструмента должен быть износо­стойким, т. е. хорошо сопротивляться изнашиванию. Чем выше износостойкость, тем медленнее изнашивается инструмент, тем выше его размерная стойкость. Это значит, что детали, последо­вательно обработанные одним и тем же инструментом, будут иметь более стабильные размеры.

Материалы для изготовления режущих инструментов должны по возможности содержать наименьшее количество дефицитных элементов.

Инструментальные стали

Углеродистые инструментальные стали (ГОСТ 1435-74). Эти стали содержат 0,6-1,3 %С. Для изготовления инструментов при­меняют качественные стали У10А, УНА, У12А, содержащие бо­лее 1 % С. После термической обработки стали имеют HRC 60-62, однако красностойкость их невысока (200-250° С). При этой температуре их твердость резко уменьшается и они не могут выполнять работу резания. Эти стали находят ограниченное при­менение, так как допустимые скорости резания обычно не превы­шают 15-18 м/мин. Из них изготовляют метчики, плашки, но­жовочные полотна и т. д.

Легированные инструментальные стали. Основой этих сталей является инструментальная углеродистая сталь марки У10А, ле­гированная хромом (X), вольфрамом (В), ванадием (Ф), кремнием (С) и другими элементами. После термической обработки твердость легированных сталей составляет HRC 62-64; их красностойкость 250-300° С.

Легированные стали по сравнению с углеродистыми имеют повышенную вязкость в закаленном состоянии, более высокую прокаливаемость, меньшую склонность к деформациям и трещи­нам при закалке. Режущие свойства легированных сталей немного выше инструментальных. Допустимые скорости резания состав­ляют 15-25 м/мин.

Для изготовления инструментов: протяжек, сверл, метчиков, плашек, разверток и т. д. наиболее широко используют стали 9ХВГ, ХВГ, 9ХС, 6ХС и др.

Быстрорежущие стали (ГОСТ 19265-73). Эти стали содержат 8,5-19% W; 3,8-4,4% Сr; 2-10% Со и V. Для изготовления ре­жущего инструмента используют быстрорежущие стали Р9, Р12, Р18, Р6МЗ, Р9Ф5, Р14Ф4, Р18Ф2, Р9К5, Р9К10, Р10К5Ф5, Р18К5Ф2. Резжущий инструмент из быстрорежущих сталей после термичес­кой обработки имеет HRC 62–65. Красностойкость сталей 600–630° С; они имеют повышенную износостойкость. Инструмент из быстрорежущей стали может работать со скоростями резания до 100 м/мин.

Сталь Р9 рекомендуется для изготовления инструментов простой формы (резцов, фрез, зенкеров). Для фасонных и сложных инструментов (резьбонарезных, зуборезных), для которых ос­новным требованием является высокая износоустойчивость, це­лесообразнее использовать сталь Р18.

Кобальтовые быстрорежущие стали (Р18К5Ф2, Р9К5, Р9К10) применяют для обработки труднообрабатываемых коррозионно-стойких и жаропрочных сталей и сплавов в условиях тяжелого прерывистого резания, вибраций, при плохих условиях охлаж­дения.

Ванадиевые быстрорежущие стали (Р9Ф5, Р14Ф4) рекомен­дуются для изготовления инструментов для чистовой обработки (протяжек, разверток, шеверов). Их также применяют для обра­ботки труднообрабатываемых материалов при срезании неболь­ших поперечных сечений стружки.

Вольфрамомолибденовые стали (Р9М4, Р6МЗ) используют для инструментов, работающих в условиях черновой обработки, а также для изготовления протяжек, долбяков, шеверов, фрез, сверл и другого инструмента.

Для экономии быстрорежущих сталей режущий инструмент делают сборным или сварным. Рабочую часть инструмента сва­ривают с хвостовиком из конструкционной стали (45, 50, 40Х и др.). Часто используют пластинки из быстро режущей стали, которые приваривают к державкам или корпусам инструментов.

Лекция 3. Литейное производство. Общая характеристика литейного производства.

Общие сведения о литейном производстве .

Современное состояние и роль литейного производства в машиностроении.

Теория и практика технологии литейного производства на современном этапе позволяет получать изделия с высокими эксплуатационными свойствами. Отливки надежно работают в реактивных двигателях, атомных энергетических установках и других машинах ответственного назначения. Они используются в изготовлении строительных конструкций, металлургических агрегатов, морских судов, деталей бытового оборудования, художественных и ювелирных изделий.

Современное состояние литейного производства определяется совершенствованием традиционных и появлением новых способов литья, непрерывно повышающимся уровнем механизации и автоматизации технологических процессов, специализацией и централизацией производства, созданием научных основ проектирования литейных машин и механизмов.

Важнейшим направлением повышения эффективности является улучшение качества, надежности, точности и шероховатости отливок с максимальным приближением их к форме готовых изделий путем внедрения новых технологических процессов и улучшения качества литейных сплавов, устранение вредного воздействия на окружающую среду и улучшения условий труда.

Литье является наиболее распространенным методом формообразования.

Преимуществами литья являются изготовление заготовок с наибольшими коэффициентами использования металла и весовой точности, изготовление отливок практически неограниченных габаритов и массы, получение заготовок из сплавов, неподдающихся пластической деформации и трудно обрабатываемых резанием (магниты).

Классификация литых заготовок

По условиям эксплуатации, независимо от способа изготовления, различают отливки:

– общего назначения – отливки для деталей, не рассчитываемых на прочность

Вверх